Introduction §
Zig is a general-purpose programming language and toolchain for maintaining robust, optimal, and reusable software.
- Robust
- Behavior is correct even for edge cases such as out of memory.
- Optimal
- Write programs the best way they can behave and perform.
- Reusable
- The same code works in many environments which have different constraints.
- Maintainable
- Precisely communicate intent to the compiler and other programmers. The language imposes a low overhead to reading code and is resilient to changing requirements and environments.
Often the most efficient way to learn something new is to see examples, so this documentation shows how to use each of Zig's features. It is all on one page so you can search with your browser's search tool.
The code samples in this document are compiled and tested as part of the main test suite of Zig.
This HTML document depends on no external files, so you can use it offline.
Zig Standard Library §
The Zig Standard Library has its own documentation.
Zig's Standard Library contains commonly used algorithms, data structures, and definitions to help you build programs or libraries. You will see many examples of Zig's Standard Library used in this documentation. To learn more about the Zig Standard Library, visit the link above.
Hello World §
Most of the time, it is more appropriate to write to stderr rather than stdout, and whether or not the message is successfully written to the stream is irrelevant. For this common case, there is a simpler API:
In this case, the !
may be omitted from the return
type because no errors are returned from the function.
See also:
Comments §
Zig supports 3 types of comments. Normal comments are ignored, but doc comments and top-level doc comments are used by the compiler to generate the package documentation.
The generated documentation is still experimental, and can be produced with:
There are no multiline comments in Zig (e.g. like /* */
comments in C). This allows Zig to have the property that each line
of code can be tokenized out of context.
Doc Comments §
A doc comment is one that begins with exactly three slashes (i.e.
///
but not ////
);
multiple doc comments in a row are merged together to form a multiline
doc comment. The doc comment documents whatever immediately follows it.
Doc comments are only allowed in certain places; it is a compile error to have a doc comment in an unexpected place, such as in the middle of an expression, or just before a non-doc comment.
Doc comments can be interleaved with normal comments. Currently, when producing the package documentation, normal comments are merged with doc comments.
Top-Level Doc Comments §
A top-level doc comment is one that begins with two slashes and an exclamation
point: //!
; it documents the current module.
It is a compile error if a top-level doc comment is not placed at the start of a container, before any expressions.
Values §
Primitive Types §
Type | C Equivalent | Description |
---|---|---|
i8 |
int8_t |
signed 8-bit integer |
u8 |
uint8_t |
unsigned 8-bit integer |
i16 |
int16_t |
signed 16-bit integer |
u16 |
uint16_t |
unsigned 16-bit integer |
i32 |
int32_t |
signed 32-bit integer |
u32 |
uint32_t |
unsigned 32-bit integer |
i64 |
int64_t |
signed 64-bit integer |
u64 |
uint64_t |
unsigned 64-bit integer |
i128 |
__int128 |
signed 128-bit integer |
u128 |
unsigned __int128 |
unsigned 128-bit integer |
isize |
intptr_t |
signed pointer sized integer |
usize |
uintptr_t , size_t |
unsigned pointer sized integer. Also see #5185 |
c_char |
char |
for ABI compatibility with C |
c_short |
short |
for ABI compatibility with C |
c_ushort |
unsigned short |
for ABI compatibility with C |
c_int |
int |
for ABI compatibility with C |
c_uint |
unsigned int |
for ABI compatibility with C |
c_long |
long |
for ABI compatibility with C |
c_ulong |
unsigned long |
for ABI compatibility with C |
c_longlong |
long long |
for ABI compatibility with C |
c_ulonglong |
unsigned long long |
for ABI compatibility with C |
c_longdouble |
long double |
for ABI compatibility with C |
f16 |
_Float16 |
16-bit floating point (10-bit mantissa) IEEE-754-2008 binary16 |
f32 |
float |
32-bit floating point (23-bit mantissa) IEEE-754-2008 binary32 |
f64 |
double |
64-bit floating point (52-bit mantissa) IEEE-754-2008 binary64 |
f80 |
long double |
80-bit floating point (64-bit mantissa) IEEE-754-2008 80-bit extended precision |
f128 |
_Float128 |
128-bit floating point (112-bit mantissa) IEEE-754-2008 binary128 |
bool |
bool |
true or false |
anyopaque |
void |
Used for type-erased pointers. |
void |
(none) | Always the value void{} |
noreturn |
(none) | the type of break , continue , return , unreachable , and while (true) {} |
type |
(none) | the type of types |
anyerror |
(none) | an error code |
comptime_int |
(none) | Only allowed for comptime-known values. The type of integer literals. |
comptime_float |
(none) | Only allowed for comptime-known values. The type of float literals. |
In addition to the integer types above, arbitrary bit-width integers can be referenced by using
an identifier of i
or u
followed by digits. For example, the identifier
i7
refers to a signed 7-bit integer. The maximum allowed bit-width of an
integer type is 65535
.
See also:
Primitive Values §
Name | Description |
---|---|
true and false |
bool values |
null |
used to set an optional type to null |
undefined |
used to leave a value unspecified |
See also:
String Literals and Unicode Code Point Literals §
String literals are constant single-item Pointers to null-terminated byte arrays. The type of string literals encodes both the length, and the fact that they are null-terminated, and thus they can be coerced to both Slices and Null-Terminated Pointers. Dereferencing string literals converts them to Arrays.
Because Zig source code is UTF-8 encoded, any
non-ASCII bytes appearing within a string literal in source code carry
their UTF-8 meaning into the content of the string in the Zig program;
the bytes are not modified by the compiler. It is possible to embed
non-UTF-8 bytes into a string literal using \xNN
notation.
Indexing into a string containing non-ASCII bytes returns individual bytes, whether valid UTF-8 or not.
Unicode code point literals have type comptime_int
, the same as
Integer Literals. All Escape Sequences are valid in both string literals
and Unicode code point literals.
See also:
Escape Sequences §
Escape Sequence | Name |
---|---|
\n |
Newline |
\r |
Carriage Return |
\t |
Tab |
\\ |
Backslash |
\' |
Single Quote |
\" |
Double Quote |
\xNN |
hexadecimal 8-bit byte value (2 digits) |
\u{NNNNNN} |
hexadecimal Unicode scalar value UTF-8 encoded (1 or more digits) |
Note that the maximum valid Unicode scalar value is 0x10ffff
.
Multiline String Literals §
Multiline string literals have no escapes and can span across multiple lines.
To start a multiline string literal, use the \\
token. Just like a comment,
the string literal goes until the end of the line. The end of the line is
not included in the string literal.
However, if the next line begins with \\
then a newline is appended and
the string literal continues.
See also:
Assignment §
Use the const
keyword to assign a value to an identifier:
const
applies to all of the bytes that the identifier immediately addresses. Pointers have their own const-ness.
If you need a variable that you can modify, use the var
keyword:
Variables must be initialized:
undefined §
Use undefined
to leave variables uninitialized:
undefined
can be coerced to any type.
Once this happens, it is no longer possible to detect that the value is undefined
.
undefined
means the value could be anything, even something that is nonsense
according to the type. Translated into English, undefined
means "Not a meaningful
value. Using this value would be a bug. The value will be unused, or overwritten before being used."
In Debug mode, Zig writes 0xaa
bytes to undefined memory. This is to catch
bugs early, and to help detect use of undefined memory in a debugger. However, this behavior is only an
implementation feature, not a language semantic, so it is not guaranteed to be observable to code.
Zig Test §
Code written within one or more test
declarations can be used to ensure behavior meets expectations:
The testing_introduction.zig
code sample tests the function
addOne
to ensure that it returns 42
given the input
41
. From this test's perspective, the addOne
function is
said to be code under test.
zig test is a tool that creates and runs a test build. By default, it builds and runs an
executable program using the default test runner provided by the Zig Standard Library
as its main entry point. During the build, test
declarations found while
resolving the given Zig source file are included for the default test runner
to run and report on.
The shell output shown above displays two lines after the zig test command. These lines are printed to standard error by the default test runner:
- 1/2 testing_introduction.test.expect addOne adds one to 41...
- Lines like this indicate which test, out of the total number of tests, is being run. In this case, 1/2 indicates that the first test, out of a total of two tests, is being run. Note that, when the test runner program's standard error is output to the terminal, these lines are cleared when a test succeeds.
- 2/2 testing_introduction.decltest.addOne...
- When the test name is an identifier, the default test runner uses the text decltest instead of test.
- All 2 tests passed.
- This line indicates the total number of tests that have passed.
Test Declarations §
Test declarations contain the keyword test
, followed by an
optional name written as a string literal or an
identifier, followed by a block containing any valid Zig code that
is allowed in a function.
Non-named test blocks always run during test builds and are exempt from Skip Tests.
Test declarations are similar to Functions: they have a return type and a block of code. The implicit
return type of test
is the Error Union Type anyerror!void
,
and it cannot be changed. When a Zig source file is not built using the zig test tool, the test
declarations are omitted from the build.
Test declarations can be written in the same file, where code under test is written, or in a separate Zig source file. Since test declarations are top-level declarations, they are order-independent and can be written before or after the code under test.
See also:
Doctests §
Test declarations named using an identifier are doctests. The identifier must refer to another declaration in scope. A doctest, like a doc comment, serves as documentation for the associated declaration, and will appear in the generated documentation for the declaration.
An effective doctest should be self-contained and focused on the declaration being tested, answering questions a new user might have about its interface or intended usage, while avoiding unnecessary or confusing details. A doctest is not a substitute for a doc comment, but rather a supplement and companion providing a testable, code-driven example, verified by zig test.
Test Failure §
The default test runner checks for an error returned from a test. When a test returns an error, the test is considered a failure and its error return trace is output to standard error. The total number of failures will be reported after all tests have run.
Skip Tests §
One way to skip tests is to filter them out by using the zig test command line parameter --test-filter [text]. This makes the test build only include tests whose name contains the supplied filter text. Note that non-named tests are run even when using the --test-filter [text] command line parameter.
To programmatically skip a test, make a test
return the error
error.SkipZigTest
and the default test runner will consider the test as being skipped.
The total number of skipped tests will be reported after all tests have run.
Report Memory Leaks §
When code allocates Memory using the Zig Standard Library's testing allocator,
std.testing.allocator
, the default test runner will report any leaks that are
found from using the testing allocator:
See also:
Detecting Test Build §
Use the compile variable @import("builtin").is_test
to detect a test build:
Test Output and Logging §
The default test runner and the Zig Standard Library's testing namespace output messages to standard error.
The Testing Namespace §
The Zig Standard Library's testing
namespace contains useful functions to help
you create tests. In addition to the expect
function, this document uses a couple of more functions
as exemplified here:
The Zig Standard Library also contains functions to compare Slices, strings, and more. See the rest of the
std.testing
namespace in the Zig Standard Library for more available functions.
Test Tool Documentation §
zig test has a few command line parameters which affect the compilation. See zig test --help for a full list.
Variables §
A variable is a unit of Memory storage.
It is generally preferable to use const
rather than
var
when declaring a variable. This causes less work for both
humans and computers to do when reading code, and creates more optimization opportunities.
The extern
keyword or @extern builtin function can be used to link against a variable that is exported
from another object. The export
keyword or @export builtin function
can be used to make a variable available to other objects at link time. In both cases,
the type of the variable must be C ABI compatible.
See also:
Identifiers §
Variable identifiers are never allowed to shadow identifiers from an outer scope.
Identifiers must start with an alphabetic character or underscore and may be followed by any number of alphanumeric characters or underscores. They must not overlap with any keywords. See Keyword Reference.
If a name that does not fit these requirements is needed, such as for linking with external libraries, the @""
syntax may be used.
Container Level Variables §
Container level variables have static lifetime and are order-independent and lazily analyzed.
The initialization value of container level variables is implicitly
comptime. If a container level variable is const
then its value is
comptime
-known, otherwise it is runtime-known.
Container level variables may be declared inside a struct, union, enum, or opaque:
Static Local Variables §
It is also possible to have local variables with static lifetime by using containers inside functions.
Thread Local Variables §
A variable may be specified to be a thread-local variable using the
threadlocal
keyword,
which makes each thread work with a separate instance of the variable:
For Single Threaded Builds, all thread local variables are treated as regular Container Level Variables.
Thread local variables may not be const
.
Local Variables §
Local variables occur inside Functions, comptime blocks, and @cImport blocks.
When a local variable is const
, it means that after initialization, the variable's
value will not change. If the initialization value of a const
variable is
comptime-known, then the variable is also comptime
-known.
A local variable may be qualified with the comptime
keyword. This causes
the variable's value to be comptime
-known, and all loads and stores of the
variable to happen during semantic analysis of the program, rather than at runtime.
All variables declared in a comptime
expression are implicitly
comptime
variables.
Integers §
Integer Literals §
Runtime Integer Values §
Integer literals have no size limitation, and if any undefined behavior occurs, the compiler catches it.
However, once an integer value is no longer known at compile-time, it must have a known size, and is vulnerable to undefined behavior.
In this function, values a
and b
are known only at runtime,
and thus this division operation is vulnerable to both Integer Overflow and
Division by Zero.
Operators such as +
and -
cause undefined behavior on
integer overflow. Alternative operators are provided for wrapping and saturating arithmetic on all targets.
+%
and -%
perform wrapping arithmetic
while +|
and -|
perform saturating arithmetic.
Zig supports arbitrary bit-width integers, referenced by using
an identifier of i
or u
followed by digits. For example, the identifier
i7
refers to a signed 7-bit integer. The maximum allowed bit-width of an
integer type is 65535
. For signed integer types, Zig uses a
two's complement representation.
See also:
Floats §
Zig has the following floating point types:
f16
- IEEE-754-2008 binary16f32
- IEEE-754-2008 binary32f64
- IEEE-754-2008 binary64f80
- IEEE-754-2008 80-bit extended precisionf128
- IEEE-754-2008 binary128c_longdouble
- matcheslong double
for the target C ABI
Float Literals §
Float literals have type comptime_float
which is guaranteed to have
the same precision and operations of the largest other floating point type, which is
f128
.
Float literals coerce to any floating point type, and to any integer type when there is no fractional component.
There is no syntax for NaN, infinity, or negative infinity. For these special values, one must use the standard library:
Floating Point Operations §
By default floating point operations use Strict
mode,
but you can switch to Optimized
mode on a per-block basis:
For this test we have to separate code into two object files - otherwise the optimizer figures out all the values at compile-time, which operates in strict mode.
See also:
Operators §
There is no operator overloading. When you see an operator in Zig, you know that it is doing something from this table, and nothing else.
Table of Operators §
Name | Syntax | Types | Remarks | Example |
---|---|---|---|---|
Addition |
|
|
|
|
Wrapping Addition |
|
|
|
|
Saturating Addition |
|
|
|
|
Subtraction |
|
|
|
|
Wrapping Subtraction |
|
|
|
|
Saturating Subtraction |
|
|
|
|
Negation |
|
|
|
|
Wrapping Negation |
|
|
|
|
Multiplication |
|
|
|
|
Wrapping Multiplication |
|
|
|
|
Saturating Multiplication |
|
|
|
|
Division |
|
|
|
|
Remainder Division |
|
|
|
|
Bit Shift Left |
|
|
|
|
Saturating Bit Shift Left |
|
|
|
|
Bit Shift Right |
|
|
|
|
Bitwise And |
|
|
|
|
Bitwise Or |
|
|
|
|
Bitwise Xor |
|
|
|
|
Bitwise Not |
|
|
||
Defaulting Optional Unwrap |
|
If a is null ,
returns b ("default value"),
otherwise returns the unwrapped value of a .
Note that b may be a value of type noreturn.
|
|
|
Optional Unwrap |
|
Equivalent to:
|
|
|
Defaulting Error Unwrap |
|
If a is an error ,
returns b ("default value"),
otherwise returns the unwrapped value of a .
Note that b may be a value of type noreturn.
err is the error and is in scope of the expression b .
|
|
|
Logical And |
|
If a is false , returns false
without evaluating b . Otherwise, returns b .
|
|
|
Logical Or |
|
If a is true ,
returns true without evaluating
b . Otherwise, returns
b .
|
|
|
Boolean Not |
|
|
||
Equality |
|
Returns true if a and b are equal, otherwise returns false .
Invokes Peer Type Resolution for the operands.
|
|
|
Null Check |
|
Returns true if a is null , otherwise returns false .
|
|
|
Inequality |
|
Returns false if a and b are equal, otherwise returns true .
Invokes Peer Type Resolution for the operands.
|
|
|
Non-Null Check |
|
Returns false if a is null , otherwise returns true .
|
|
|
Greater Than |
|
Returns true if a is greater than b, otherwise returns false .
Invokes Peer Type Resolution for the operands.
|
|
|
Greater or Equal |
|
Returns true if a is greater than or equal to b, otherwise returns false .
Invokes Peer Type Resolution for the operands.
|
|
|
Less Than |
|
Returns true if a is less than b, otherwise returns false .
Invokes Peer Type Resolution for the operands.
|
|
|
Lesser or Equal |
|
Returns true if a is less than or equal to b, otherwise returns false .
Invokes Peer Type Resolution for the operands.
|
|
|
Array Concatenation |
|
|
|
|
Array Multiplication |
|
|
|
|
Pointer Dereference |
|
Pointer dereference. |
|
|
Address Of |
|
All types |
|
|
Error Set Merge |
|
Merging Error Sets |
|
Precedence §
x() x[] x.y x.* x.?
a!b
x{}
!x -x -%x ~x &x ?x
* / % ** *% *| ||
+ - ++ +% -% +| -|
<< >> <<|
& ^ | orelse catch
== != < > <= >=
and
or
= *= *%= *|= /= %= += +%= +|= -= -%= -|= <<= <<|= >>= &= ^= |=
Arrays §
See also:
Multidimensional Arrays §
Multidimensional arrays can be created by nesting arrays:
Sentinel-Terminated Arrays §
The syntax [N:x]T
describes an array which has a sentinel element of value x
at the
index corresponding to the length N
.
See also:
Vectors §
A vector is a group of booleans, Integers, Floats, or Pointers which are operated on in parallel, using SIMD instructions if possible. Vector types are created with the builtin function @Vector.
Vectors support the same builtin operators as their underlying base types. These operations are performed element-wise, and return a vector of the same length as the input vectors. This includes:
- Arithmetic (
+
,-
,/
,*
,@divFloor
,@sqrt
,@ceil
,@log
, etc.) - Bitwise operators (
>>
,<<
,&
,|
,~
, etc.) - Comparison operators (
<
,>
,==
, etc.)
It is prohibited to use a math operator on a mixture of scalars (individual numbers) and vectors. Zig provides the @splat builtin to easily convert from scalars to vectors, and it supports @reduce and array indexing syntax to convert from vectors to scalars. Vectors also support assignment to and from fixed-length arrays with comptime-known length.
For rearranging elements within and between vectors, Zig provides the @shuffle and @select functions.
Operations on vectors shorter than the target machine's native SIMD size will typically compile to single SIMD instructions, while vectors longer than the target machine's native SIMD size will compile to multiple SIMD instructions. If a given operation doesn't have SIMD support on the target architecture, the compiler will default to operating on each vector element one at a time. Zig supports any comptime-known vector length up to 2^32-1, although small powers of two (2-64) are most typical. Note that excessively long vector lengths (e.g. 2^20) may result in compiler crashes on current versions of Zig.
TODO talk about C ABI interop
TODO consider suggesting std.MultiArrayList
See also:
Pointers §
Zig has two kinds of pointers: single-item and many-item.
*T
- single-item pointer to exactly one item.- Supports deref syntax:
ptr.*
- Supports slice syntax:
ptr[0..1]
- Supports pointer subtraction:
ptr - ptr
- Supports deref syntax:
[*]T
- many-item pointer to unknown number of items.- Supports index syntax:
ptr[i]
- Supports slice syntax:
ptr[start..end]
andptr[start..]
- Supports pointer-integer arithmetic:
ptr + int
,ptr - int
- Supports pointer subtraction:
ptr - ptr
T
must have a known size, which means that it cannot beanyopaque
or any other opaque type.- Supports index syntax:
These types are closely related to Arrays and Slices:
*[N]T
- pointer to N items, same as single-item pointer to an array.- Supports index syntax:
array_ptr[i]
- Supports slice syntax:
array_ptr[start..end]
- Supports len property:
array_ptr.len
- Supports pointer subtraction:
array_ptr - array_ptr
- Supports index syntax:
[]T
- is a slice (a fat pointer, which contains a pointer of type[*]T
and a length).- Supports index syntax:
slice[i]
- Supports slice syntax:
slice[start..end]
- Supports len property:
slice.len
- Supports index syntax:
Use &x
to obtain a single-item pointer:
Zig supports pointer arithmetic. It's better to assign the pointer to [*]T
and increment that variable. For example, directly incrementing the pointer from a slice will corrupt it.
In Zig, we generally prefer Slices rather than Sentinel-Terminated Pointers. You can turn an array or pointer into a slice using slice syntax.
Slices have bounds checking and are therefore protected against this kind of undefined behavior. This is one reason we prefer slices to pointers.
Pointers work at compile-time too, as long as the code does not depend on an undefined memory layout:
To convert an integer address into a pointer, use @ptrFromInt
.
To convert a pointer to an integer, use @intFromPtr
:
Zig is able to preserve memory addresses in comptime code, as long as the pointer is never dereferenced:
@ptrCast converts a pointer's element type to another. This
creates a new pointer that can cause undetectable illegal behavior
depending on the loads and stores that pass through it. Generally, other
kinds of type conversions are preferable to
@ptrCast
if possible.
See also:
volatile §
Loads and stores are assumed to not have side effects. If a given load or store
should have side effects, such as Memory Mapped Input/Output (MMIO), use volatile
.
In the following code, loads and stores with mmio_ptr
are guaranteed to all happen
and in the same order as in source code:
Note that volatile
is unrelated to concurrency and Atomics.
If you see code that is using volatile
for something other than Memory Mapped
Input/Output, it is probably a bug.
Alignment §
Each type has an alignment - a number of bytes such that, when a value of the type is loaded from or stored to memory, the memory address must be evenly divisible by this number. You can use @alignOf to find out this value for any type.
Alignment depends on the CPU architecture, but is always a power of two, and
less than 1 << 29
.
In Zig, a pointer type has an alignment value. If the value is equal to the alignment of the underlying type, it can be omitted from the type:
In the same way that a *i32
can be coerced to a
*const i32
, a pointer with a larger alignment can be implicitly
cast to a pointer with a smaller alignment, but not vice versa.
You can specify alignment on variables and functions. If you do this, then pointers to them get the specified alignment:
If you have a pointer or a slice that has a small alignment, but you know that it actually has a bigger alignment, use @alignCast to change the pointer into a more aligned pointer. This is a no-op at runtime, but inserts a safety check:
allowzero §
This pointer attribute allows a pointer to have address zero. This is only ever needed on the
freestanding OS target, where the address zero is mappable. If you want to represent null pointers, use
Optional Pointers instead. Optional Pointers with allowzero
are not the same size as pointers. In this code example, if the pointer
did not have the allowzero
attribute, this would be a
Pointer Cast Invalid Null panic:
Sentinel-Terminated Pointers §
The syntax [*:x]T
describes a pointer that
has a length determined by a sentinel value. This provides protection
against buffer overflow and overreads.
See also:
Slices §
A slice is a pointer and a length. The difference between an array and
a slice is that the array's length is part of the type and known at
compile-time, whereas the slice's length is known at runtime.
Both can be accessed with the len
field.
This is one reason we prefer slices to pointers.
See also:
Sentinel-Terminated Slices §
The syntax [:x]T
is a slice which has a runtime-known length
and also guarantees a sentinel value at the element indexed by the length. The type does not
guarantee that there are no sentinel elements before that. Sentinel-terminated slices allow element
access to the len
index.
Sentinel-terminated slices can also be created using a variation of the slice syntax
data[start..end :x]
, where data
is a many-item pointer,
array or slice and x
is the sentinel value.
Sentinel-terminated slicing asserts that the element in the sentinel position of the backing data is actually the sentinel value. If this is not the case, safety-protected Undefined Behavior results.
See also:
struct §
Default Field Values §
Each struct field may have an expression indicating the default field value. Such expressions are executed at comptime, and allow the field to be omitted in a struct literal expression:
Faulty Default Field Values §
Default field values are only appropriate when the data invariants of a struct cannot be violated by omitting that field from an initialization.
For example, here is an inappropriate use of default struct field initialization:
Above you can see the danger of ignoring this principle. The default field values caused the data invariant to be violated, causing illegal behavior.
To fix this, remove the default values from all the struct fields, and provide a named default value:
If a struct value requires a runtime-known value in order to be initialized without violating data invariants, then use an initialization method that accepts those runtime values, and populates the remaining fields.
extern struct §
An extern struct
has in-memory layout matching
the C ABI for the target.
If well-defined in-memory layout is not required, struct is a better choice because it places fewer restrictions on the compiler.
See packed struct for a struct that has the ABI of its backing integer, which can be useful for modeling flags.
See also:
packed struct §
Unlike normal structs, packed
structs have guaranteed in-memory layout:
- Fields remain in the order declared, least to most significant.
- There is no padding between fields.
- Zig supports arbitrary width Integers and although normally, integers with fewer than 8 bits will still use 1 byte of memory, in packed structs, they use exactly their bit width.
bool
fields use exactly 1 bit.- An enum field uses exactly the bit width of its integer tag type.
- A packed union field uses exactly the bit width of the union field with the largest bit width.
- Packed structs support equality operators.
This means that a packed struct
can participate
in a @bitCast or a @ptrCast to reinterpret memory.
This even works at comptime:
The backing integer is inferred from the fields' total bit width. Optionally, it can be explicitly provided and enforced at compile time:
Zig allows the address to be taken of a non-byte-aligned field:
However, the pointer to a non-byte-aligned field has special properties and cannot be passed when a normal pointer is expected:
In this case, the function bar
cannot be called because the pointer
to the non-ABI-aligned field mentions the bit offset, but the function expects an ABI-aligned pointer.
Pointers to non-ABI-aligned fields share the same address as the other fields within their host integer:
This can be observed with @bitOffsetOf and offsetOf:
Packed structs have the same alignment as their backing integer, however, overaligned pointers to packed structs can override this:
It's also possible to set alignment of struct fields:
Equating packed structs results in a comparison of the backing integer, and only works for the `==` and `!=` operators.
Using packed structs with volatile is problematic, and may be a compile error in the future. For details on this subscribe to this issue. TODO update these docs with a recommendation on how to use packed structs with MMIO (the use case for volatile packed structs) once this issue is resolved. Don't worry, there will be a good solution for this use case in zig.
Struct Naming §
Since all structs are anonymous, Zig infers the type name based on a few rules.
- If the struct is in the initialization expression of a variable, it gets named after that variable.
- If the struct is in the
return
expression, it gets named after the function it is returning from, with the parameter values serialized. - Otherwise, the struct gets a name such as
(filename.funcname.__struct_ID)
. - If the struct is declared inside another struct, it gets named after both the parent struct and the name inferred by the previous rules, separated by a dot.
Anonymous Struct Literals §
Zig allows omitting the struct type of a literal. When the result is coerced, the struct literal will directly instantiate the result location, with no copy:
The struct type can be inferred. Here the result location does not include a type, and so Zig infers the type:
Tuples §
Anonymous structs can be created without specifying field names, and are referred to as "tuples".
The fields are implicitly named using numbers starting from 0. Because their names are integers,
they cannot be accessed with .
syntax without also wrapping them in
@""
. Names inside @""
are always recognised as
identifiers.
Like arrays, tuples have a .len field, can be indexed (provided the index is comptime-known) and work with the ++ and ** operators. They can also be iterated over with inline for.
See also:
enum §
See also:
extern enum §
By default, enums are not guaranteed to be compatible with the C ABI:
For a C-ABI-compatible enum, provide an explicit tag type to the enum:
Enum Literals §
Enum literals allow specifying the name of an enum field without specifying the enum type:
Non-exhaustive enum §
A non-exhaustive enum can be created by adding a trailing _
field.
The enum must specify a tag type and cannot consume every enumeration value.
@enumFromInt on a non-exhaustive enum involves the safety semantics of @intCast to the integer tag type, but beyond that always results in a well-defined enum value.
A switch on a non-exhaustive enum can include a _
prong as an alternative to an else
prong.
With a _
prong the compiler errors if all the known tag names are not handled by the switch.
union §
A bare union
defines a set of possible types that a value
can be as a list of fields. Only one field can be active at a time.
The in-memory representation of bare unions is not guaranteed.
Bare unions cannot be used to reinterpret memory. For that, use @ptrCast,
or use an extern union or a packed union which have
guaranteed in-memory layout.
Accessing the non-active field is
safety-checked Undefined Behavior:
You can activate another field by assigning the entire union:
In order to use switch with a union, it must be a Tagged union.
To initialize a union when the tag is a comptime-known name, see @unionInit.
Tagged union §
Unions can be declared with an enum tag type. This turns the union into a tagged union, which makes it eligible to use with switch expressions. Tagged unions coerce to their tag type: Type Coercion: Unions and Enums.
In order to modify the payload of a tagged union in a switch expression,
place a *
before the variable name to make it a pointer:
Unions can be made to infer the enum tag type. Further, unions can have methods just like structs and enums.
@tagName can be used to return a comptime
[:0]const u8
value representing the field name:
extern union §
An extern union
has memory layout guaranteed to be compatible with
the target C ABI.
See also:
packed union §
A packed union
has well-defined in-memory layout and is eligible
to be in a packed struct.
Anonymous Union Literals §
Anonymous Struct Literals syntax can be used to initialize unions without specifying the type:
opaque §
opaque {}
declares a new type with an unknown (but non-zero) size and alignment.
It can contain declarations the same as structs, unions,
and enums.
This is typically used for type safety when interacting with C code that does not expose struct details. Example:
Blocks §
Blocks are used to limit the scope of variable declarations:
Blocks are expressions. When labeled, break
can be used
to return a value from the block:
Here, blk
can be any name.
See also:
Shadowing §
Identifiers are never allowed to "hide" other identifiers by using the same name:
Because of this, when you read Zig code you can always rely on an identifier to consistently mean the same thing within the scope it is defined. Note that you can, however, use the same name if the scopes are separate:
Empty Blocks §
An empty block is equivalent to void{}
:
switch §
switch
can be used to capture the field values
of a Tagged union. Modifications to the field values can be
done by placing a *
before the capture variable name,
turning it into a pointer.
See also:
Exhaustive Switching §
When a switch
expression does not have an else
clause,
it must exhaustively list all the possible values. Failure to do so is a compile error:
Switching with Enum Literals §
Enum Literals can be useful to use with switch
to avoid
repetitively specifying enum or union types:
Labeled switch §
When a switch statement is labeled, it can be referenced from a
break
or continue
.
break
will return a value from the switch
.
A continue
targeting a switch must have an
operand. When executed, it will jump to the matching prong, as if the
switch
were executed again with the continue
's operand replacing the initial switch value.
Semantically, this is equivalent to the following loop:
This can improve clarity of (for example) state machines, where the syntax continue :sw .next_state
is unambiguous, explicit, and immediately understandable.
However, the motivating example is a switch on each element of an array, where using a single switch can improve clarity and performance:
If the operand to continue
is
comptime-known, then it can be lowered to an unconditional branch
to the relevant case. Such a branch is perfectly predicted, and hence
typically very fast to execute.
If the operand is runtime-known, each continue
can
embed a conditional branch inline (ideally through a jump table), which
allows a CPU to predict its target independently of any other prong. A
loop-based lowering would force every branch through the same dispatch
point, hindering branch prediction.
Inline Switch Prongs §
Switch prongs can be marked as inline
to generate
the prong's body for each possible value it could have, making the
captured value comptime.
The inline
keyword may also be combined with ranges:
inline else
prongs can be used as a type safe
alternative to inline for
loops:
When using an inline prong switching on an union an additional capture can be used to obtain the union's enum tag value.
See also:
while §
A while loop is used to repeatedly execute an expression until some condition is no longer true.
Use break
to exit a while loop early.
Use continue
to jump back to the beginning of the loop.
While loops support a continue expression which is executed when the loop
is continued. The continue
keyword respects this expression.
While loops are expressions. The result of the expression is the
result of the else
clause of a while loop, which is executed when
the condition of the while loop is tested as false.
break
, like return
, accepts a value
parameter. This is the result of the while
expression.
When you break
from a while loop, the else
branch is not
evaluated.
Labeled while §
When a while
loop is labeled, it can be referenced from a break
or continue
from within a nested loop:
while with Optionals §
Just like if expressions, while loops can take an optional as the condition and capture the payload. When null is encountered the loop exits.
When the |x|
syntax is present on a while
expression,
the while condition must have an Optional Type.
The else
branch is allowed on optional iteration. In this case, it will
be executed on the first null value encountered.
while with Error Unions §
Just like if expressions, while loops can take an error union as the condition and capture the payload or the error code. When the condition results in an error code the else branch is evaluated and the loop is finished.
When the else |x|
syntax is present on a while
expression,
the while condition must have an Error Union Type.
inline while §
While loops can be inlined. This causes the loop to be unrolled, which allows the code to do some things which only work at compile time, such as use types as first class values.
It is recommended to use inline
loops only for one of these reasons:
- You need the loop to execute at comptime for the semantics to work.
- You have a benchmark to prove that forcibly unrolling the loop in this way is measurably faster.
See also:
for §
Labeled for §
When a for
loop is labeled, it can be referenced from a break
or continue
from within a nested loop:
inline for §
For loops can be inlined. This causes the loop to be unrolled, which allows the code to do some things which only work at compile time, such as use types as first class values. The capture value and iterator value of inlined for loops are compile-time known.
It is recommended to use inline
loops only for one of these reasons:
- You need the loop to execute at comptime for the semantics to work.
- You have a benchmark to prove that forcibly unrolling the loop in this way is measurably faster.
See also:
if §
if with Optionals §
See also:
defer §
Executes an expression unconditionally at scope exit.
Defer expressions are evaluated in reverse order.
Inside a defer expression the return statement is not allowed.
See also:
unreachable §
In Debug and ReleaseSafe mode
unreachable
emits a call to panic
with the message reached unreachable code
.
In ReleaseFast and ReleaseSmall mode, the optimizer uses the assumption that unreachable
code
will never be hit to perform optimizations.
Basics §
In fact, this is how std.debug.assert
is implemented:
At Compile-Time §
See also:
noreturn §
noreturn
is the type of:
break
continue
return
unreachable
while (true) {}
When resolving types together, such as if
clauses or switch
prongs,
the noreturn
type is compatible with every other type. Consider:
Another use case for noreturn
is the exit
function:
Functions §
There is a difference between a function body and a function pointer. Function bodies are comptime-only types while function Pointers may be runtime-known.
Pass-by-value Parameters §
Primitive types such as Integers and Floats passed as parameters are copied, and then the copy is available in the function body. This is called "passing by value". Copying a primitive type is essentially free and typically involves nothing more than setting a register.
Structs, unions, and arrays can sometimes be more efficiently passed as a reference, since a copy could be arbitrarily expensive depending on the size. When these types are passed as parameters, Zig may choose to copy and pass by value, or pass by reference, whichever way Zig decides will be faster. This is made possible, in part, by the fact that parameters are immutable.
For extern functions, Zig follows the C ABI for passing structs and unions by value.
Function Parameter Type Inference §
Function parameters can be declared with anytype
in place of the type.
In this case the parameter types will be inferred when the function is called.
Use @TypeOf and @typeInfo to get information about the inferred type.
inline fn §
Adding the inline
keyword to a function definition makes that
function become semantically inlined at the callsite. This is
not a hint to be possibly observed by optimization passes, but has
implications on the types and values involved in the function call.
Unlike normal function calls, arguments at an inline function callsite which are compile-time known are treated as Compile Time Parameters. This can potentially propagate all the way to the return value:
If inline
is removed, the test fails with the compile error
instead of passing.
It is generally better to let the compiler decide when to inline a function, except for these scenarios:
- To change how many stack frames are in the call stack, for debugging purposes.
- To force comptime-ness of the arguments to propagate to the return value of the function, as in the above example.
- Real world performance measurements demand it.
Note that inline
actually restricts
what the compiler is allowed to do. This can harm binary size,
compilation speed, and even runtime performance.
Function Reflection §
Errors §
Error Set Type §
An error set is like an enum. However, each error name across the entire compilation gets assigned an unsigned integer greater than 0. You are allowed to declare the same error name more than once, and if you do, it gets assigned the same integer value.
The error set type defaults to a u16
, though if the maximum number of distinct
error values is provided via the --error-limit [num] command line parameter an integer type
with the minimum number of bits required to represent all of the error values will be used.
You can coerce an error from a subset to a superset:
But you cannot coerce an error from a superset to a subset:
There is a shortcut for declaring an error set with only 1 value, and then getting that value:
This is equivalent to:
This becomes useful when using Inferred Error Sets.
The Global Error Set §
anyerror
refers to the global error set.
This is the error set that contains all errors in the entire compilation unit.
It is a superset of all other error sets and a subset of none of them.
You can coerce any error set to the global one, and you can explicitly cast an error of the global error set to a non-global one. This inserts a language-level assert to make sure the error value is in fact in the destination error set.
The global error set should generally be avoided because it prevents the compiler from knowing what errors are possible at compile-time. Knowing the error set at compile-time is better for generated documentation and helpful error messages, such as forgetting a possible error value in a switch.
Error Union Type §
An error set type and normal type can be combined with the !
binary operator to form an error union type. You are likely to use an
error union type more often than an error set type by itself.
Here is a function to parse a string into a 64-bit integer:
Notice the return type is !u64
. This means that the function
either returns an unsigned 64 bit integer, or an error. We left off the error set
to the left of the !
, so the error set is inferred.
Within the function definition, you can see some return statements that return
an error, and at the bottom a return statement that returns a u64
.
Both types coerce to anyerror!u64
.
What it looks like to use this function varies depending on what you're trying to do. One of the following:
- You want to provide a default value if it returned an error.
- If it returned an error then you want to return the same error.
- You know with complete certainty it will not return an error, so want to unconditionally unwrap it.
- You want to take a different action for each possible error.
catch §
If you want to provide a default value, you can use the catch
binary operator:
In this code, number
will be equal to the successfully parsed string, or
a default value of 13. The type of the right hand side of the binary catch
operator must
match the unwrapped error union type, or be of type noreturn
.
If you want to provide a default value with
catch
after performing some logic, you
can combine catch
with named Blocks:
try §
Let's say you wanted to return the error if you got one, otherwise continue with the function logic:
There is a shortcut for this. The try
expression:
try
evaluates an error union expression. If it is an error, it returns
from the current function with the same error. Otherwise, the expression results in
the unwrapped value.
Maybe you know with complete certainty that an expression will never be an error. In this case you can do this:
const number = parseU64("1234", 10) catch unreachable;
Here we know for sure that "1234" will parse successfully. So we put the
unreachable
value on the right hand side. unreachable
generates
a panic in Debug and ReleaseSafe modes and undefined behavior in
ReleaseFast and ReleaseSmall modes. So, while we're debugging the
application, if there was a surprise error here, the application would crash
appropriately.
You may want to take a different action for every situation. For that, we combine the if and switch expression:
Finally, you may want to handle only some errors. For that, you can capture the unhandled
errors in the else
case, which now contains a narrower error set:
You must use the variable capture syntax. If you don't need the
variable, you can capture with _
and avoid the
switch
.
errdefer §
The other component to error handling is defer statements.
In addition to an unconditional defer, Zig has errdefer
,
which evaluates the deferred expression on block exit path if and only if
the function returned with an error from the block.
Example:
The neat thing about this is that you get robust error handling without the verbosity and cognitive overhead of trying to make sure every exit path is covered. The deallocation code is always directly following the allocation code.
The errdefer
statement can optionally capture the error:
A couple of other tidbits about error handling:
- These primitives give enough expressiveness that it's completely practical
to have failing to check for an error be a compile error. If you really want
to ignore the error, you can add
catch unreachable
and get the added benefit of crashing in Debug and ReleaseSafe modes if your assumption was wrong. - Since Zig understands error types, it can pre-weight branches in favor of errors not occurring. Just a small optimization benefit that is not available in other languages.
See also:
An error union is created with the !
binary operator.
You can use compile-time reflection to access the child type of an error union:
Merging Error Sets §
Use the ||
operator to merge two error sets together. The resulting
error set contains the errors of both error sets. Doc comments from the left-hand
side override doc comments from the right-hand side. In this example, the doc
comments for C.PathNotFound
is A doc comment
.
This is especially useful for functions which return different error sets depending
on comptime branches. For example, the Zig standard library uses
LinuxFileOpenError || WindowsFileOpenError
for the error set of opening
files.
Inferred Error Sets §
Because many functions in Zig return a possible error, Zig supports inferring the error set.
To infer the error set for a function, prepend the !
operator to the function’s return type, like !T
:
When a function has an inferred error set, that function becomes generic and thus it becomes trickier to do certain things with it, such as obtain a function pointer, or have an error set that is consistent across different build targets. Additionally, inferred error sets are incompatible with recursion.
In these situations, it is recommended to use an explicit error set. You can generally start with an empty error set and let compile errors guide you toward completing the set.
These limitations may be overcome in a future version of Zig.
Error Return Traces §
Error Return Traces show all the points in the code that an error was returned to the calling function. This makes it practical to use try everywhere and then still be able to know what happened if an error ends up bubbling all the way out of your application.
Look closely at this example. This is no stack trace.
You can see that the final error bubbled up was PermissionDenied
,
but the original error that started this whole thing was FileNotFound
. In the bar
function, the code handles the original error code,
and then returns another one, from the switch statement. Error Return Traces make this clear, whereas a stack trace would look like this:
Here, the stack trace does not explain how the control
flow in bar
got to the hello()
call.
One would have to open a debugger or further instrument the application
in order to find out. The error return trace, on the other hand,
shows exactly how the error bubbled up.
This debugging feature makes it easier to iterate quickly on code that robustly handles all error conditions. This means that Zig developers will naturally find themselves writing correct, robust code in order to increase their development pace.
Error Return Traces are enabled by default in Debug and ReleaseSafe builds and disabled by default in ReleaseFast and ReleaseSmall builds.
There are a few ways to activate this error return tracing feature:
- Return an error from main
- An error makes its way to
catch unreachable
and you have not overridden the default panic handler - Use errorReturnTrace to access the current return trace. You can use
std.debug.dumpStackTrace
to print it. This function returns comptime-known null when building without error return tracing support.
Implementation Details §
To analyze performance cost, there are two cases:
- when no errors are returned
- when returning errors
For the case when no errors are returned, the cost is a single memory write operation, only in the first non-failable function in the call graph that calls a failable function, i.e. when a function returning void
calls a function returning error
.
This is to initialize this struct in the stack memory:
Here, N is the maximum function call depth as determined by call graph analysis. Recursion is ignored and counts for 2.
A pointer to StackTrace
is passed as a secret parameter to every function that can return an error, but it's always the first parameter, so it can likely sit in a register and stay there.
That's it for the path when no errors occur. It's practically free in terms of performance.
When generating the code for a function that returns an error, just before the return
statement (only for the return
statements that return errors), Zig generates a call to this function:
The cost is 2 math operations plus some memory reads and writes. The memory accessed is constrained and should remain cached for the duration of the error return bubbling.
As for code size cost, 1 function call before a return statement is no big deal. Even so,
I have a plan to make the call to
__zig_return_error
a tail call, which brings the code size cost down to actually zero. What is a return statement in code without error return tracing can become a jump instruction in code with error return tracing.
Optionals §
One area that Zig provides safety without compromising efficiency or readability is with the optional type.
The question mark symbolizes the optional type. You can convert a type to an optional type by putting a question mark in front of it, like this:
Now the variable optional_int
could be an i32
, or null
.
Instead of integers, let's talk about pointers. Null references are the source of many runtime exceptions, and even stand accused of being the worst mistake of computer science.
Zig does not have them.
Instead, you can use an optional pointer. This secretly compiles down to a normal pointer, since we know we can use 0 as the null value for the optional type. But the compiler can check your work and make sure you don't assign null to something that can't be null.
Typically the downside of not having null is that it makes the code more verbose to write. But, let's compare some equivalent C code and Zig code.
Task: call malloc, if the result is null, return null.
C code
Zig code
Here, Zig is at least as convenient, if not more, than C. And, the type of "ptr"
is [*]u8
not ?[*]u8
. The orelse
keyword
unwrapped the optional type and therefore ptr
is guaranteed to be non-null everywhere
it is used in the function.
The other form of checking against NULL you might see looks like this:
In Zig you can accomplish the same thing:
Once again, the notable thing here is that inside the if block,
foo
is no longer an optional pointer, it is a pointer, which
cannot be null.
One benefit to this is that functions which take pointers as arguments can
be annotated with the "nonnull" attribute - __attribute__((nonnull))
in
GCC.
The optimizer can sometimes make better decisions knowing that pointer arguments
cannot be null.
Optional Type §
An optional is created by putting ?
in front of a type. You can use compile-time
reflection to access the child type of an optional:
null §
Just like undefined, null
has its own type, and the only way to use it is to
cast it to a different type:
Optional Pointers §
An optional pointer is guaranteed to be the same size as a pointer. The null
of
the optional is guaranteed to be address 0.
See also:
Casting §
A type cast converts a value of one type to another. Zig has Type Coercion for conversions that are known to be completely safe and unambiguous, and Explicit Casts for conversions that one would not want to happen on accident. There is also a third kind of type conversion called Peer Type Resolution for the case when a result type must be decided given multiple operand types.
Type Coercion §
Type coercion occurs when one type is expected, but different type is provided:
Type coercions are only allowed when it is completely unambiguous how to get from one type to another, and the transformation is guaranteed to be safe. There is one exception, which is C Pointers.
Type Coercion: Stricter Qualification §
Values which have the same representation at runtime can be cast to increase the strictness of the qualifiers, no matter how nested the qualifiers are:
const
- non-const to const is allowedvolatile
- non-volatile to volatile is allowedalign
- bigger to smaller alignment is allowed- error sets to supersets is allowed
These casts are no-ops at runtime since the value representation does not change.
In addition, pointers coerce to const optional pointers:
Type Coercion: Integer and Float Widening §
Integers coerce to integer types which can represent every value of the old type, and likewise Floats coerce to float types which can represent every value of the old type.
Type Coercion: Float to Int §
A compiler error is appropriate because this ambiguous expression leaves the compiler two choices about the coercion.
- Cast
54.0
tocomptime_int
resulting in@as(comptime_int, 10)
, which is casted to@as(f32, 10)
- Cast
5
tocomptime_float
resulting in@as(comptime_float, 10.8)
, which is casted to@as(f32, 10.8)
Type Coercion: Slices, Arrays and Pointers §
See also:
Type Coercion: Optionals §
The payload type of Optionals, as well as null, coerce to the optional type.
Optionals work nested inside the Error Union Type, too:
Type Coercion: Error Unions §
The payload type of an Error Union Type as well as the Error Set Type coerce to the error union type:
Type Coercion: Compile-Time Known Numbers §
When a number is comptime-known to be representable in the destination type, it may be coerced:
Type Coercion: Unions and Enums §
Tagged unions can be coerced to enums, and enums can be coerced to tagged unions when they are comptime-known to be a field of the union that has only one possible value, such as void:
See also:
Type Coercion: undefined §
undefined can be coerced to any type.
Type Coercion: Tuples to Arrays §
Tuples can be coerced to arrays, if all of the fields have the same type.
Explicit Casts §
Explicit casts are performed via Builtin Functions. Some explicit casts are safe; some are not. Some explicit casts perform language-level assertions; some do not. Some explicit casts are no-ops at runtime; some are not.
- @bitCast - change type but maintain bit representation
- @alignCast - make a pointer have more alignment
- @enumFromInt - obtain an enum value based on its integer tag value
- @errorFromInt - obtain an error code based on its integer value
- @errorCast - convert to a smaller error set
- @floatCast - convert a larger float to a smaller float
- @floatFromInt - convert an integer to a float value
- @intCast - convert between integer types
- @intFromBool - convert true to 1 and false to 0
- @intFromEnum - obtain the integer tag value of an enum or tagged union
- @intFromError - obtain the integer value of an error code
- @intFromFloat - obtain the integer part of a float value
- @intFromPtr - obtain the address of a pointer
- @ptrFromInt - convert an address to a pointer
- @ptrCast - convert between pointer types
- @truncate - convert between integer types, chopping off bits
Peer Type Resolution §
Peer Type Resolution occurs in these places:
- switch expressions
- if expressions
- while expressions
- for expressions
- Multiple break statements in a block
- Some binary operations
This kind of type resolution chooses a type that all peer types can coerce into. Here are some examples:
Zero Bit Types §
For some types, @sizeOf is 0:
- void
- The Integers
u0
andi0
. - Arrays and Vectors with len 0, or with an element type that is a zero bit type.
- An enum with only 1 tag.
- A struct with all fields being zero bit types.
- A union with only 1 field which is a zero bit type.
These types can only ever have one possible value, and thus require 0 bits to represent. Code that makes use of these types is not included in the final generated code:
When this turns into machine code, there is no code generated in the
body of entry
, even in Debug mode. For example, on x86_64:
0000000000000010 <entry>:
10: 55 push %rbp
11: 48 89 e5 mov %rsp,%rbp
14: 5d pop %rbp
15: c3 retq
These assembly instructions do not have any code associated with the void values - they only perform the function call prologue and epilogue.
void §
void
can be useful for instantiating generic types. For example, given a
Map(Key, Value)
, one can pass void
for the Value
type to make it into a Set
:
Note that this is different from using a dummy value for the hash map value.
By using void
as the type of the value, the hash map entry type has no value field, and
thus the hash map takes up less space. Further, all the code that deals with storing and loading the
value is deleted, as seen above.
void
is distinct from anyopaque
.
void
has a known size of 0 bytes, and anyopaque
has an unknown, but non-zero, size.
Expressions of type void
are the only ones whose value can be ignored. For example, ignoring
a non-void
expression is a compile error:
However, if the expression has type void
, there will be no error. Expression results can be explicitly ignored by assigning them to _
.
Result Location Semantics §
During compilation, every Zig expression and sub-expression is assigned optional result location
information. This information dictates what type the expression should have (its result type), and
where the resulting value should be placed in memory (its result location). The information is
optional in the sense that not every expression has this information: assignment to
_
, for instance, does not provide any information about the type of an
expression, nor does it provide a concrete memory location to place it in.
As a motivating example, consider the statement const x: u32 = 42;
. The type
annotation here provides a result type of u32
to the initialization expression
42
, instructing the compiler to coerce this integer (initially of type
comptime_int
) to this type. We will see more examples shortly.
This is not an implementation detail: the logic outlined above is codified into the Zig language specification, and is the primary mechanism of type inference in the language. This system is collectively referred to as "Result Location Semantics".
Result Types §
Result types are propagated recursively through expressions where possible. For instance, if the
expression &e
has result type *u32
, then
e
is given a result type of u32
, allowing the
language to perform this coercion before taking a reference.
The result type mechanism is utilized by casting builtins such as @intCast
.
Rather than taking as an argument the type to cast to, these builtins use their result type to
determine this information. The result type is often known from context; where it is not, the
@as
builtin can be used to explicitly provide a result type.
We can break down the result types for each component of a simple expression as follows:
This result type information is useful for the aforementioned cast builtins, as well as to avoid
the construction of pre-coercion values, and to avoid the need for explicit type coercions in some
cases. The following table details how some common expressions propagate result types, where
x
and y
are arbitrary sub-expressions.
Expression | Parent Result Type | Sub-expression Result Type |
---|---|---|
const val: T = x |
- | x is a T |
var val: T = x |
- | x is a T |
val = x |
- | x is a @TypeOf(val) |
@as(T, x) |
- | x is a T |
&x |
*T |
x is a T |
&x |
[]T |
x is some array of T |
f(x) |
- | x has the type of the first parameter of f |
.{x} |
T |
x is a std.meta.FieldType(T, .@"0") |
.{ .a = x } |
T |
x is a std.meta.FieldType(T, .a) |
T{x} |
- | x is a std.meta.FieldType(T, .@"0") |
T{ .a = x } |
- | x is a std.meta.FieldType(T, .a) |
@Type(x) |
- | x is a std.builtin.Type |
@typeInfo(x) |
- | x is a type |
x << y |
- | y is a std.math.Log2IntCeil(@TypeOf(x)) |
Result Locations §
In addition to result type information, every expression may be optionally assigned a result location: a pointer to which the value must be directly written. This system can be used to prevent intermediate copies when initializing data structures, which can be important for types which must have a fixed memory address ("pinned" types).
When compiling the simple assignment expression x = e
, many languages would
create the temporary value e
on the stack, and then assign it to
x
, potentially performing a type coercion in the process. Zig approaches this
differently. The expression e
is given a result type matching the type of
x
, and a result location of &x
. For many syntactic
forms of e
, this has no practical impact. However, it can have important
semantic effects when working with more complex syntax forms.
For instance, if the expression .{ .a = x, .b = y }
has a result location of
ptr
, then x
is given a result location of
&ptr.a
, and y
a result location of &ptr.b
.
Without this system, this expression would construct a temporary struct value entirely on the stack, and
only then copy it to the destination address. In essence, Zig desugars the assignment
foo = .{ .a = x, .b = y }
to the two statements foo.a = x; foo.b = y;
.
This can sometimes be important when assigning an aggregate value where the initialization expression depends on the previous value of the aggregate. The easiest way to demonstrate this is by attempting to swap fields of a struct or array - the following logic looks sound, but in fact is not:
The following table details how some common expressions propagate result locations, where
x
and y
are arbitrary sub-expressions. Note that
some expressions cannot provide meaningful result locations to sub-expressions, even if they
themselves have a result location.
Expression | Result Location | Sub-expression Result Locations |
---|---|---|
const val: T = x |
- | x has result location &val |
var val: T = x |
- | x has result location &val |
val = x |
- | x has result location &val |
@as(T, x) |
ptr |
x has no result location |
&x |
ptr |
x has no result location |
f(x) |
ptr |
x has no result location |
.{x} |
ptr |
x has result location &ptr[0] |
.{ .a = x } |
ptr |
x has result location &ptr.a |
T{x} |
ptr |
x has no result location (typed initializers do not propagate result locations) |
T{ .a = x } |
ptr |
x has no result location (typed initializers do not propagate result locations) |
@Type(x) |
ptr |
x has no result location |
@typeInfo(x) |
ptr |
x has no result location |
x << y |
ptr |
x and y do not have result locations |
usingnamespace §
usingnamespace
is a declaration that mixes all the public
declarations of the operand, which must be a struct, union, enum,
or opaque, into the namespace:
usingnamespace
has an important use case when organizing the public
API of a file or package. For example, one might have c.zig
with all of the
C imports:
The above example demonstrates using pub
to qualify the
usingnamespace
additionally makes the imported declarations
pub
. This can be used to forward declarations, giving precise control
over what declarations a given file exposes.
comptime §
Zig places importance on the concept of whether an expression is known at compile-time. There are a few different places this concept is used, and these building blocks are used to keep the language small, readable, and powerful.
Introducing the Compile-Time Concept §
Compile-Time Parameters §
Compile-time parameters is how Zig implements generics. It is compile-time duck typing.
In Zig, types are first-class citizens. They can be assigned to variables, passed as parameters to functions,
and returned from functions. However, they can only be used in expressions which are known at compile-time,
which is why the parameter T
in the above snippet must be marked with comptime
.
A comptime
parameter means that:
- At the callsite, the value must be known at compile-time, or it is a compile error.
- In the function definition, the value is known at compile-time.
For example, if we were to introduce another function to the above snippet:
This is an error because the programmer attempted to pass a value only known at run-time to a function which expects a value known at compile-time.
Another way to get an error is if we pass a type that violates the type checker when the function is analyzed. This is what it means to have compile-time duck typing.
For example:
On the flip side, inside the function definition with the comptime
parameter, the
value is known at compile-time. This means that we actually could make this work for the bool type
if we wanted to:
This works because Zig implicitly inlines if
expressions when the condition
is known at compile-time, and the compiler guarantees that it will skip analysis of
the branch not taken.
This means that the actual function generated for max
in this situation looks like
this:
All the code that dealt with compile-time known values is eliminated and we are left with only the necessary run-time code to accomplish the task.
This works the same way for switch
expressions - they are implicitly inlined
when the target expression is compile-time known.
Compile-Time Variables §
In Zig, the programmer can label variables as comptime
. This guarantees to the compiler
that every load and store of the variable is performed at compile-time. Any violation of this results in a
compile error.
This combined with the fact that we can inline
loops allows us to write
a function which is partially evaluated at compile-time and partially at run-time.
For example:
This example is a bit contrived, because the compile-time evaluation component is unnecessary;
this code would work fine if it was all done at run-time. But it does end up generating
different code. In this example, the function performFn
is generated three different times,
for the different values of prefix_char
provided:
Note that this happens even in a debug build. This is not a way to write more optimized code, but it is a way to make sure that what should happen at compile-time, does happen at compile-time. This catches more errors and allows expressiveness that in other languages requires using macros, generated code, or a preprocessor to accomplish.
Compile-Time Expressions §
In Zig, it matters whether a given expression is known at compile-time or run-time. A programmer can
use a comptime
expression to guarantee that the expression will be evaluated at compile-time.
If this cannot be accomplished, the compiler will emit an error. For example:
It doesn't make sense that a program could call exit()
(or any other external function)
at compile-time, so this is a compile error. However, a comptime
expression does much
more than sometimes cause a compile error.
Within a comptime
expression:
- All variables are
comptime
variables. - All
if
,while
,for
, andswitch
expressions are evaluated at compile-time, or emit a compile error if this is not possible. - All
return
andtry
expressions are invalid (unless the function itself is called at compile-time). - All code with runtime side effects or depending on runtime values emits a compile error.
- All function calls cause the compiler to interpret the function at compile-time, emitting a compile error if the function tries to do something that has global runtime side effects.
This means that a programmer can create a function which is called both at compile-time and run-time, with no modification to the function required.
Let's look at an example:
Imagine if we had forgotten the base case of the recursive function and tried to run the tests:
The compiler produces an error which is a stack trace from trying to evaluate the function at compile-time.
Luckily, we used an unsigned integer, and so when we tried to subtract 1 from 0, it triggered undefined behavior, which is always a compile error if the compiler knows it happened. But what would have happened if we used a signed integer?
The compiler is supposed to notice that evaluating this function at compile-time took more than 1000 branches, and thus emits an error and gives up. If the programmer wants to increase the budget for compile-time computation, they can use a built-in function called @setEvalBranchQuota to change the default number 1000 to something else.
However, there is a design flaw in the compiler causing it to stack overflow instead of having the proper behavior here. I'm terribly sorry about that. I hope to get this resolved before the next release.
What if we fix the base case, but put the wrong value in the
expect
line?
At container level (outside of any function), all expressions are implicitly
comptime
expressions. This means that we can use functions to
initialize complex static data. For example:
When we compile this program, Zig generates the constants with the answer pre-computed. Here are the lines from the generated LLVM IR:
@0 = internal unnamed_addr constant [25 x i32] [i32 2, i32 3, i32 5, i32 7, i32 11, i32 13, i32 17, i32 19, i32 23, i32 29, i32 31, i32 37, i32 41, i32 43, i32 47, i32 53, i32 59, i32 61, i32 67, i32 71, i32 73, i32 79, i32 83, i32 89, i32 97]
@1 = internal unnamed_addr constant i32 1060
Note that we did not have to do anything special with the syntax of these functions. For example,
we could call the sum
function as is with a slice of numbers whose length and values were
only known at run-time.
Generic Data Structures §
Zig uses comptime capabilities to implement generic data structures without introducing any special-case syntax.
Here is an example of a generic List
data structure.
That's it. It's a function that returns an anonymous struct
.
For the purposes of error messages and debugging, Zig infers the name
"List(i32)"
from the function name and parameters invoked when creating
the anonymous struct.
To explicitly give a type a name, we assign it to a constant.
In this example, the Node
struct refers to itself.
This works because all top level declarations are order-independent.
As long as the compiler can determine the size of the struct, it is free to refer to itself.
In this case, Node
refers to itself as a pointer, which has a
well-defined size at compile time, so it works fine.
Case Study: print in Zig §
Putting all of this together, let's see how print
works in Zig.
Let's crack open the implementation of this and see how it works:
This is a proof of concept implementation; the actual function in the standard library has more formatting capabilities.
Note that this is not hard-coded into the Zig compiler; this is userland code in the standard library.
When this function is analyzed from our example code above, Zig partially evaluates the function and emits a function that actually looks like this:
printValue
is a function that takes a parameter of any type, and does different things depending
on the type:
And now, what happens if we give too many arguments to print
?
Zig gives programmers the tools needed to protect themselves against their own mistakes.
Zig doesn't care whether the format argument is a string literal,
only that it is a compile-time known value that can be coerced to a []const u8
:
This works fine.
Zig does not special case string formatting in the compiler and instead exposes enough power to accomplish this task in userland. It does so without introducing another language on top of Zig, such as a macro language or a preprocessor language. It's Zig all the way down.
See also:
Assembly §
For some use cases, it may be necessary to directly control the machine code generated by Zig programs, rather than relying on Zig's code generation. For these cases, one can use inline assembly. Here is an example of implementing Hello, World on x86_64 Linux using inline assembly:
Dissecting the syntax:
For x86 and x86_64 targets, the syntax is AT&T syntax, rather than the more popular Intel syntax. This is due to technical constraints; assembly parsing is provided by LLVM and its support for Intel syntax is buggy and not well tested.
Some day Zig may have its own assembler. This would allow it to integrate more seamlessly into the language, as well as be compatible with the popular NASM syntax. This documentation section will be updated before 1.0.0 is released, with a conclusive statement about the status of AT&T vs Intel/NASM syntax.
Output Constraints §
Output constraints are still considered to be unstable in Zig, and so LLVM documentation and GCC documentation must be used to understand the semantics.
Note that some breaking changes to output constraints are planned with issue #215.
Input Constraints §
Input constraints are still considered to be unstable in Zig, and so LLVM documentation and GCC documentation must be used to understand the semantics.
Note that some breaking changes to input constraints are planned with issue #215.
Clobbers §
Clobbers are the set of registers whose values will not be preserved by the execution of
the assembly code. These do not include output or input registers. The special clobber
value of "memory"
means that the assembly causes writes to
arbitrary undeclared memory locations - not only the memory pointed to by a declared
indirect output.
Failure to declare the full set of clobbers for a given inline assembly expression is unchecked Undefined Behavior.
Global Assembly §
When an assembly expression occurs in a container level comptime block, this is global assembly.
This kind of assembly has different rules than inline assembly. First, volatile
is not valid because all global assembly is unconditionally included.
Second, there are no inputs, outputs, or clobbers. All global assembly is concatenated
verbatim into one long string and assembled together. There are no template substitution rules regarding
%
as there are in inline assembly expressions.
Atomics §
TODO: @atomic rmw
TODO: builtin atomic memory ordering enum
See also:
Async Functions §
Async functions regressed with the release of 0.11.0. Their future in the Zig language is unclear due to multiple unsolved problems:
- LLVM's lack of ability to optimize them.
- Third-party debuggers' lack of ability to debug them.
- The cancellation problem.
- Async function pointers preventing the stack size from being known.
These problems are surmountable, but it will take time. The Zig team is currently focused on other priorities.
Builtin Functions §
Builtin functions are provided by the compiler and are prefixed with @
.
The comptime
keyword on a parameter means that the parameter must be known
at compile time.
@addrSpaceCast §
@addrSpaceCast(ptr: anytype) anytype
Converts a pointer from one address space to another. The new address space is inferred based on the result type. Depending on the current target and address spaces, this cast may be a no-op, a complex operation, or illegal. If the cast is legal, then the resulting pointer points to the same memory location as the pointer operand. It is always valid to cast a pointer between the same address spaces.
@addWithOverflow §
@addWithOverflow(a: anytype, b: anytype) struct { @TypeOf(a, b), u1 }
Performs a + b
and returns a tuple with the result and a possible overflow bit.
@alignCast §
@alignCast(ptr: anytype) anytype
ptr
can be *T
, ?*T
, or []T
.
Changes the alignment of a pointer. The alignment to use is inferred based on the result type.
A pointer alignment safety check is added to the generated code to make sure the pointer is aligned as promised.
@alignOf §
@alignOf(comptime T: type) comptime_int
This function returns the number of bytes that this type should be aligned to for the current target to match the C ABI. When the child type of a pointer has this alignment, the alignment can be omitted from the type.
const assert = @import("std").debug.assert;
comptime {
assert(*u32 == *align(@alignOf(u32)) u32);
}
The result is a target-specific compile time constant. It is guaranteed to be less than or equal to @sizeOf(T).
See also:
@as §
@as(comptime T: type, expression) T
Performs Type Coercion. This cast is allowed when the conversion is unambiguous and safe, and is the preferred way to convert between types, whenever possible.
@atomicLoad §
@atomicLoad(comptime T: type, ptr: *const T, comptime ordering: AtomicOrder) T
This builtin function atomically dereferences a pointer to a T
and returns the value.
T
must be a pointer, a bool
, a float,
an integer or an enum.
AtomicOrder
can be found with @import("std").builtin.AtomicOrder
.
See also:
@atomicRmw §
@atomicRmw(comptime T: type, ptr: *T, comptime op: AtomicRmwOp, operand: T, comptime ordering: AtomicOrder) T
This builtin function dereferences a pointer to a T
and atomically
modifies the value and returns the previous value.
T
must be a pointer, a bool
, a float,
an integer or an enum.
AtomicOrder
can be found with @import("std").builtin.AtomicOrder
.
AtomicRmwOp
can be found with @import("std").builtin.AtomicRmwOp
.
See also:
@atomicStore §
@atomicStore(comptime T: type, ptr: *T, value: T, comptime ordering: AtomicOrder) void
This builtin function dereferences a pointer to a T
and atomically stores the given value.
T
must be a pointer, a bool
, a float,
an integer or an enum.
AtomicOrder
can be found with @import("std").builtin.AtomicOrder
.
See also:
@bitCast §
@bitCast(value: anytype) anytype
Converts a value of one type to another type. The return type is the inferred result type.
Asserts that @sizeOf(@TypeOf(value)) == @sizeOf(DestType)
.
Asserts that @typeInfo(DestType) != .pointer
. Use @ptrCast
or @ptrFromInt
if you need this.
Can be used for these things for example:
- Convert
f32
tou32
bits - Convert
i32
tou32
preserving twos complement
Works at compile-time if value
is known at compile time. It's a compile error to bitcast a value of undefined layout; this means that, besides the restriction from types which possess dedicated casting builtins (enums, pointers, error sets), bare structs, error unions, slices, optionals, and any other type without a well-defined memory layout, also cannot be used in this operation.
@bitOffsetOf §
@bitOffsetOf(comptime T: type, comptime field_name: []const u8) comptime_int
Returns the bit offset of a field relative to its containing struct.
For non packed structs, this will always be divisible by 8
.
For packed structs, non-byte-aligned fields will share a byte offset, but they will have different
bit offsets.
See also:
@bitSizeOf §
@bitSizeOf(comptime T: type) comptime_int
This function returns the number of bits it takes to store T
in memory if the type
were a field in a packed struct/union.
The result is a target-specific compile time constant.
This function measures the size at runtime. For types that are disallowed at runtime, such as
comptime_int
and type
, the result is 0
.
See also:
@branchHint §
@branchHint(hint: BranchHint) void
Hints to the optimizer how likely a given branch of control flow is to be reached.
BranchHint
can be found with @import("std").builtin.BranchHint
.
This function is only valid as the first statement in a control flow branch, or the first statement in a function.
@breakpoint §
@breakpoint() void
This function inserts a platform-specific debug trap instruction which causes
debuggers to break there.
Unlike for @trap()
, execution may continue after this point if the program is resumed.
This function is only valid within function scope.
See also:
@mulAdd §
@mulAdd(comptime T: type, a: T, b: T, c: T) T
Fused multiply-add, similar to (a * b) + c
, except
only rounds once, and is thus more accurate.
Supports Floats and Vectors of floats.
@byteSwap §
@byteSwap(operand: anytype) T
@TypeOf(operand)
must be an integer type or an integer vector type with bit count evenly divisible by 8.
operand
may be an integer or vector.
Swaps the byte order of the integer. This converts a big endian integer to a little endian integer, and converts a little endian integer to a big endian integer.
Note that for the purposes of memory layout with respect to endianness, the integer type should be
related to the number of bytes reported by @sizeOf bytes. This is demonstrated with
u24
. @sizeOf(u24) == 4
, which means that a
u24
stored in memory takes 4 bytes, and those 4 bytes are what are swapped on
a little vs big endian system. On the other hand, if T
is specified to
be u24
, then only 3 bytes are reversed.
@bitReverse §
@bitReverse(integer: anytype) T
@TypeOf(anytype)
accepts any integer type or integer vector type.
Reverses the bitpattern of an integer value, including the sign bit if applicable.
For example 0b10110110 (u8 = 182
, i8 = -74
)
becomes 0b01101101 (u8 = 109
, i8 = 109
).
@offsetOf §
@offsetOf(comptime T: type, comptime field_name: []const u8) comptime_int
Returns the byte offset of a field relative to its containing struct.
See also:
@call §
@call(modifier: std.builtin.CallModifier, function: anytype, args: anytype) anytype
Calls a function, in the same way that invoking an expression with parentheses does:
@call
allows more flexibility than normal function call syntax does. The
CallModifier
enum is reproduced here:
@cDefine §
@cDefine(comptime name: []const u8, value) void
This function can only occur inside @cImport
.
This appends #define $name $value
to the @cImport
temporary buffer.
To define without a value, like this:
#define _GNU_SOURCE
Use the void value, like this:
@cDefine("_GNU_SOURCE", {})
See also:
@cImport §
@cImport(expression) type
This function parses C code and imports the functions, types, variables, and compatible macro definitions into a new empty struct type, and then returns that type.
expression
is interpreted at compile time. The builtin functions
@cInclude
, @cDefine
, and @cUndef
work
within this expression, appending to a temporary buffer which is then parsed as C code.
Usually you should only have one @cImport
in your entire application, because it saves the compiler
from invoking clang multiple times, and prevents inline functions from being duplicated.
Reasons for having multiple @cImport
expressions would be:
- To avoid a symbol collision, for example if foo.h and bar.h both
#define CONNECTION_COUNT
- To analyze the C code with different preprocessor defines
See also:
@cInclude §
@cInclude(comptime path: []const u8) void
This function can only occur inside @cImport
.
This appends #include <$path>\n
to the c_import
temporary buffer.
See also:
@clz §
@clz(operand: anytype) anytype
@TypeOf(operand)
must be an integer type or an integer vector type.
operand
may be an integer or vector.
Counts the number of most-significant (leading in a big-endian sense) zeroes in an integer - "count leading zeroes".
If operand
is a comptime-known integer,
the return type is comptime_int
.
Otherwise, the return type is an unsigned integer or vector of unsigned integers with the minimum number
of bits that can represent the bit count of the integer type.
If operand
is zero, @clz
returns the bit width
of integer type T
.
See also:
@cmpxchgStrong §
@cmpxchgStrong(comptime T: type, ptr: *T, expected_value: T, new_value: T, success_order: AtomicOrder, fail_order: AtomicOrder) ?T
This function performs a strong atomic compare-and-exchange operation, returning null
if the current value is not the given expected value. It's the equivalent of this code,
except atomic:
If you are using cmpxchg in a retry loop, @cmpxchgWeak is the better choice, because it can be implemented more efficiently in machine instructions.
T
must be a pointer, a bool
, a float,
an integer or an enum.
@typeInfo(@TypeOf(ptr)).pointer.alignment
must be >= @sizeOf(T).
AtomicOrder
can be found with @import("std").builtin.AtomicOrder
.
See also:
@cmpxchgWeak §
@cmpxchgWeak(comptime T: type, ptr: *T, expected_value: T, new_value: T, success_order: AtomicOrder, fail_order: AtomicOrder) ?T
This function performs a weak atomic compare-and-exchange operation, returning null
if the current value is not the given expected value. It's the equivalent of this code,
except atomic:
If you are using cmpxchg in a retry loop, the sporadic failure will be no problem, and cmpxchgWeak
is the better choice, because it can be implemented more efficiently in machine instructions.
However if you need a stronger guarantee, use @cmpxchgStrong.
T
must be a pointer, a bool
, a float,
an integer or an enum.
@typeInfo(@TypeOf(ptr)).pointer.alignment
must be >= @sizeOf(T).
AtomicOrder
can be found with @import("std").builtin.AtomicOrder
.
See also:
@compileError §
@compileError(comptime msg: []const u8) noreturn
This function, when semantically analyzed, causes a compile error with the
message msg
.
There are several ways that code avoids being semantically checked, such as
using if
or switch
with compile time constants,
and comptime
functions.
@compileLog §
@compileLog(...) void
This function prints the arguments passed to it at compile-time.
To prevent accidentally leaving compile log statements in a codebase, a compilation error is added to the build, pointing to the compile log statement. This error prevents code from being generated, but does not otherwise interfere with analysis.
This function can be used to do "printf debugging" on compile-time executing code.
@constCast §
@constCast(value: anytype) DestType
Remove const
qualifier from a pointer.
@ctz §
@ctz(operand: anytype) anytype
@TypeOf(operand)
must be an integer type or an integer vector type.
operand
may be an integer or vector.
Counts the number of least-significant (trailing in a big-endian sense) zeroes in an integer - "count trailing zeroes".
If operand
is a comptime-known integer,
the return type is comptime_int
.
Otherwise, the return type is an unsigned integer or vector of unsigned integers with the minimum number
of bits that can represent the bit count of the integer type.
If operand
is zero, @ctz
returns
the bit width of integer type T
.
See also:
@cUndef §
@cUndef(comptime name: []const u8) void
This function can only occur inside @cImport
.
This appends #undef $name
to the @cImport
temporary buffer.
See also:
@cVaArg §
@cVaArg(operand: *std.builtin.VaList, comptime T: type) T
Implements the C macro va_arg
.
See also:
@cVaCopy §
@cVaCopy(src: *std.builtin.VaList) std.builtin.VaList
Implements the C macro va_copy
.
See also:
@cVaEnd §
@cVaEnd(src: *std.builtin.VaList) void
Implements the C macro va_end
.
See also:
@cVaStart §
@cVaStart() std.builtin.VaList
Implements the C macro va_start
. Only valid inside a variadic function.
See also:
@divExact §
@divExact(numerator: T, denominator: T) T
Exact division. Caller guarantees denominator != 0
and
@divTrunc(numerator, denominator) * denominator == numerator
.
@divExact(6, 3) == 2
@divExact(a, b) * b == a
For a function that returns a possible error code, use @import("std").math.divExact
.
See also:
@divFloor §
@divFloor(numerator: T, denominator: T) T
Floored division. Rounds toward negative infinity. For unsigned integers it is
the same as numerator / denominator
. Caller guarantees denominator != 0
and
!(@typeInfo(T) == .int and T.is_signed and numerator == std.math.minInt(T) and denominator == -1)
.
@divFloor(-5, 3) == -2
(@divFloor(a, b) * b) + @mod(a, b) == a
For a function that returns a possible error code, use @import("std").math.divFloor
.
See also:
@divTrunc §
@divTrunc(numerator: T, denominator: T) T
Truncated division. Rounds toward zero. For unsigned integers it is
the same as numerator / denominator
. Caller guarantees denominator != 0
and
!(@typeInfo(T) == .int and T.is_signed and numerator == std.math.minInt(T) and denominator == -1)
.
@divTrunc(-5, 3) == -1
(@divTrunc(a, b) * b) + @rem(a, b) == a
For a function that returns a possible error code, use @import("std").math.divTrunc
.
See also:
@embedFile §
@embedFile(comptime path: []const u8) *const [N:0]u8
This function returns a compile time constant pointer to null-terminated,
fixed-size array with length equal to the byte count of the file given by
path
. The contents of the array are the contents of the file.
This is equivalent to a string literal
with the file contents.
path
is absolute or relative to the current file, just like @import
.
See also:
@enumFromInt §
@enumFromInt(integer: anytype) anytype
Converts an integer into an enum value. The return type is the inferred result type.
Attempting to convert an integer with no corresponding value in the enum invokes
safety-checked Undefined Behavior.
Note that a non-exhaustive enum has corresponding values for all
integers in the enum's integer tag type: the _
value represents all
the remaining unnamed integers in the enum's tag type.
See also:
@errorFromInt §
@errorFromInt(value: std.meta.Int(.unsigned, @bitSizeOf(anyerror))) anyerror
Converts from the integer representation of an error into The Global Error Set type.
It is generally recommended to avoid this cast, as the integer representation of an error is not stable across source code changes.
Attempting to convert an integer that does not correspond to any error results in safety-protected Undefined Behavior.
See also:
@errorName §
@errorName(err: anyerror) [:0]const u8
This function returns the string representation of an error. The string representation
of error.OutOfMem
is "OutOfMem"
.
If there are no calls to @errorName
in an entire application,
or all calls have a compile-time known value for err
, then no
error name table will be generated.
@errorReturnTrace §
@errorReturnTrace() ?*builtin.StackTrace
If the binary is built with error return tracing, and this function is invoked in a function that calls a function with an error or error union return type, returns a stack trace object. Otherwise returns null.
@errorCast §
@errorCast(value: anytype) anytype
Converts an error set or error union value from one error set to another error set. The return type is the inferred result type. Attempting to convert an error which is not in the destination error set results in safety-protected Undefined Behavior.
@export §
@export(comptime ptr: *const anyopaque, comptime options: std.builtin.ExportOptions) void
Creates a symbol in the output object file which refers to the target of ptr
.
ptr
must point to a global variable or a comptime-known constant.
This builtin can be called from a comptime block to conditionally export symbols.
When ptr
points to a function with the C calling convention and
options.linkage
is .Strong
, this is equivalent to
the export
keyword used on a function:
This is equivalent to:
Note that even when using export
, the @"foo"
syntax for
identifiers can be used to choose any string for the symbol name:
When looking at the resulting object, you can see the symbol is used verbatim:
00000000000001f0 T A function name that is a complete sentence.
See also:
@extern §
@extern(T: type, comptime options: std.builtin.ExternOptions) T
Creates a reference to an external symbol in the output object file. T must be a pointer type.
See also:
@field §
@field(lhs: anytype, comptime field_name: []const u8) (field)
Performs field access by a compile-time string. Works on both fields and declarations.
@fieldParentPtr §
@fieldParentPtr(comptime field_name: []const u8, field_ptr: *T) anytype
Given a pointer to a field, returns the base pointer of a struct.
@FieldType §
@FieldType(comptime Type: type, comptime field_name: []const u8) type
Given a type and the name of one of its fields, returns the type of that field.
@floatCast §
@floatCast(value: anytype) anytype
Convert from one float type to another. This cast is safe, but may cause the numeric value to lose precision. The return type is the inferred result type.
@floatFromInt §
@floatFromInt(int: anytype) anytype
Converts an integer to the closest floating point representation. The return type is the inferred result type. To convert the other way, use @intFromFloat. This operation is legal for all values of all integer types.
@frameAddress §
@frameAddress() usize
This function returns the base pointer of the current stack frame.
The implications of this are target-specific and not consistent across all platforms. The frame address may not be available in release mode due to aggressive optimizations.
This function is only valid within function scope.
@hasDecl §
@hasDecl(comptime Container: type, comptime name: []const u8) bool
Returns whether or not a container has a declaration
matching name
.
See also:
@hasField §
@hasField(comptime Container: type, comptime name: []const u8) bool
Returns whether the field name of a struct, union, or enum exists.
The result is a compile time constant.
It does not include functions, variables, or constants.
See also:
@import §
@import(comptime path: []const u8) type
This function finds a zig file corresponding to path
and adds it to the build,
if it is not already added.
Zig source files are implicitly structs, with a name equal to the file's basename with the extension
truncated. @import
returns the struct type corresponding to the file.
Declarations which have the pub
keyword may be referenced from a different
source file than the one they are declared in.
path
can be a relative path or it can be the name of a package.
If it is a relative path, it is relative to the file that contains the @import
function call.
The following packages are always available:
@import("std")
- Zig Standard Library@import("builtin")
- Target-specific information The commandzig build-exe --show-builtin
outputs the source to stdout for reference.@import("root")
- Root source file This is usuallysrc/main.zig
but depends on what file is built.
See also:
@inComptime §
@inComptime() bool
Returns whether the builtin was run in a comptime
context. The result is a compile-time constant.
This can be used to provide alternative, comptime-friendly implementations of functions. It should not be used, for instance, to exclude certain functions from being evaluated at comptime.
See also:
@intCast §
@intCast(int: anytype) anytype
Converts an integer to another integer while keeping the same numerical value. The return type is the inferred result type. Attempting to convert a number which is out of range of the destination type results in safety-protected Undefined Behavior.
To truncate the significant bits of a number out of range of the destination type, use @truncate.
If T
is comptime_int
,
then this is semantically equivalent to Type Coercion.
@intFromBool §
@intFromBool(value: bool) u1
Converts true
to @as(u1, 1)
and false
to
@as(u1, 0)
.
@intFromEnum §
@intFromEnum(enum_or_tagged_union: anytype) anytype
Converts an enumeration value into its integer tag type. When a tagged union is passed, the tag value is used as the enumeration value.
If there is only one possible enum value, the result is a comptime_int
known at comptime.
See also:
@intFromError §
@intFromError(err: anytype) std.meta.Int(.unsigned, @bitSizeOf(anyerror))
Supports the following types:
Converts an error to the integer representation of an error.
It is generally recommended to avoid this cast, as the integer representation of an error is not stable across source code changes.
See also:
@intFromFloat §
@intFromFloat(float: anytype) anytype
Converts the integer part of a floating point number to the inferred result type.
If the integer part of the floating point number cannot fit in the destination type, it invokes safety-checked Undefined Behavior.
See also:
@intFromPtr §
@intFromPtr(value: anytype) usize
Converts value
to a usize
which is the address of the pointer.
value
can be *T
or ?*T
.
To convert the other way, use @ptrFromInt
@max §
@max(...) T
Takes two or more arguments and returns the biggest value included (the maximum). This builtin accepts integers, floats, and vectors of either. In the latter case, the operation is performed element wise.
NaNs are handled as follows: return the biggest non-NaN value included. If all operands are NaN, return NaN.
See also:
@memcpy §
@memcpy(noalias dest, noalias source) void
This function copies bytes from one region of memory to another.
dest
must be a mutable slice, a mutable pointer to an array, or
a mutable many-item pointer. It may have any
alignment, and it may have any element type.
source
must be a slice, a pointer to
an array, or a many-item pointer. It may
have any alignment, and it may have any element type.
The source
element type must support Type Coercion
into the dest
element type. The element types may have
different ABI size, however, that may incur a performance penalty.
Similar to for loops, at least one of source
and
dest
must provide a length, and if two lengths are provided,
they must be equal.
Finally, the two memory regions must not overlap.
@memset §
@memset(dest, elem) void
This function sets all the elements of a memory region to elem
.
dest
must be a mutable slice or a mutable pointer to an array.
It may have any alignment, and it may have any element type.
elem
is coerced to the element type of dest
.
For securely zeroing out sensitive contents from memory, you should use
std.crypto.secureZero
@min §
@min(...) T
Takes two or more arguments and returns the smallest value included (the minimum). This builtin accepts integers, floats, and vectors of either. In the latter case, the operation is performed element wise.
NaNs are handled as follows: return the smallest non-NaN value included. If all operands are NaN, return NaN.
See also:
@wasmMemorySize §
@wasmMemorySize(index: u32) usize
This function returns the size of the Wasm memory identified by index
as
an unsigned value in units of Wasm pages. Note that each Wasm page is 64KB in size.
This function is a low level intrinsic with no safety mechanisms usually useful for allocator
designers targeting Wasm. So unless you are writing a new allocator from scratch, you should use
something like @import("std").heap.WasmPageAllocator
.
See also:
@wasmMemoryGrow §
@wasmMemoryGrow(index: u32, delta: usize) isize
This function increases the size of the Wasm memory identified by index
by
delta
in units of unsigned number of Wasm pages. Note that each Wasm page
is 64KB in size. On success, returns previous memory size; on failure, if the allocation fails,
returns -1.
This function is a low level intrinsic with no safety mechanisms usually useful for allocator
designers targeting Wasm. So unless you are writing a new allocator from scratch, you should use
something like @import("std").heap.WasmPageAllocator
.
See also:
@mod §
@mod(numerator: T, denominator: T) T
Modulus division. For unsigned integers this is the same as
numerator % denominator
. Caller guarantees denominator > 0
, otherwise the
operation will result in a Remainder Division by Zero when runtime safety checks are enabled.
@mod(-5, 3) == 1
(@divFloor(a, b) * b) + @mod(a, b) == a
For a function that returns an error code, see @import("std").math.mod
.
See also:
@mulWithOverflow §
@mulWithOverflow(a: anytype, b: anytype) struct { @TypeOf(a, b), u1 }
Performs a * b
and returns a tuple with the result and a possible overflow bit.
@panic §
@panic(message: []const u8) noreturn
Invokes the panic handler function. By default the panic handler function
calls the public panic
function exposed in the root source file, or
if there is not one specified, the std.builtin.default_panic
function from std/builtin.zig
.
Generally it is better to use @import("std").debug.panic
.
However, @panic
can be useful for 2 scenarios:
- From library code, calling the programmer's panic function if they exposed one in the root source file.
- When mixing C and Zig code, calling the canonical panic implementation across multiple .o files.
See also:
@popCount §
@popCount(operand: anytype) anytype
@TypeOf(operand)
must be an integer type.
operand
may be an integer or vector.
Counts the number of bits set in an integer - "population count".
If operand
is a comptime-known integer,
the return type is comptime_int
.
Otherwise, the return type is an unsigned integer or vector of unsigned integers with the minimum number
of bits that can represent the bit count of the integer type.
See also:
@prefetch §
@prefetch(ptr: anytype, comptime options: PrefetchOptions) void
This builtin tells the compiler to emit a prefetch instruction if supported by the target CPU. If the target CPU does not support the requested prefetch instruction, this builtin is a no-op. This function has no effect on the behavior of the program, only on the performance characteristics.
The ptr
argument may be any pointer type and determines the memory
address to prefetch. This function does not dereference the pointer, it is perfectly legal
to pass a pointer to invalid memory to this function and no illegal behavior will result.
PrefetchOptions
can be found with @import("std").builtin.PrefetchOptions
.
@ptrCast §
@ptrCast(value: anytype) anytype
Converts a pointer of one type to a pointer of another type. The return type is the inferred result type.
Optional Pointers are allowed. Casting an optional pointer which is null to a non-optional pointer invokes safety-checked Undefined Behavior.
@ptrCast
cannot be used for:
- Removing
const
qualifier, use @constCast. - Removing
volatile
qualifier, use @volatileCast. - Changing pointer address space, use @addrSpaceCast.
- Increasing pointer alignment, use @alignCast.
- Casting a non-slice pointer to a slice, use slicing syntax
ptr[start..end]
.
@ptrFromInt §
@ptrFromInt(address: usize) anytype
Converts an integer to a pointer. The return type is the inferred result type.
To convert the other way, use @intFromPtr. Casting an address of 0 to a destination type
which in not optional and does not have the allowzero
attribute will result in a
Pointer Cast Invalid Null panic when runtime safety checks are enabled.
If the destination pointer type does not allow address zero and address
is zero, this invokes safety-checked Undefined Behavior.
@rem §
@rem(numerator: T, denominator: T) T
Remainder division. For unsigned integers this is the same as
numerator % denominator
. Caller guarantees denominator > 0
, otherwise the
operation will result in a Remainder Division by Zero when runtime safety checks are enabled.
@rem(-5, 3) == -2
(@divTrunc(a, b) * b) + @rem(a, b) == a
For a function that returns an error code, see @import("std").math.rem
.
See also:
@returnAddress §
@returnAddress() usize
This function returns the address of the next machine code instruction that will be executed when the current function returns.
The implications of this are target-specific and not consistent across all platforms.
This function is only valid within function scope. If the function gets inlined into a calling function, the returned address will apply to the calling function.
@select §
@select(comptime T: type, pred: @Vector(len, bool), a: @Vector(len, T), b: @Vector(len, T)) @Vector(len, T)
Selects values element-wise from a
or b
based on pred
. If pred[i]
is true
, the corresponding element in the result will be a[i]
and otherwise b[i]
.
See also:
@setEvalBranchQuota §
@setEvalBranchQuota(comptime new_quota: u32) void
Increase the maximum number of backwards branches that compile-time code execution can use before giving up and making a compile error.
If the new_quota
is smaller than the default quota (1000
) or
a previously explicitly set quota, it is ignored.
Example:
Now we use @setEvalBranchQuota
:
See also:
@setFloatMode §
@setFloatMode(comptime mode: FloatMode) void
Changes the current scope's rules about how floating point operations are defined.
-
Strict
(default) - Floating point operations follow strict IEEE compliance. -
Optimized
- Floating point operations may do all of the following:- Assume the arguments and result are not NaN. Optimizations are required to retain defined behavior over NaNs, but the value of the result is undefined.
- Assume the arguments and result are not +/-Inf. Optimizations are required to retain defined behavior over +/-Inf, but the value of the result is undefined.
- Treat the sign of a zero argument or result as insignificant.
- Use the reciprocal of an argument rather than perform division.
- Perform floating-point contraction (e.g. fusing a multiply followed by an addition into a fused multiply-add).
- Perform algebraically equivalent transformations that may change results in floating point (e.g. reassociate).
-ffast-math
in GCC.
The floating point mode is inherited by child scopes, and can be overridden in any scope. You can set the floating point mode in a struct or module scope by using a comptime block.
FloatMode
can be found with @import("std").builtin.FloatMode
.
See also:
@setRuntimeSafety §
@setRuntimeSafety(comptime safety_on: bool) void
Sets whether runtime safety checks are enabled for the scope that contains the function call.
Note: it is planned to replace
@setRuntimeSafety
with @optimizeFor
@shlExact §
@shlExact(value: T, shift_amt: Log2T) T
Performs the left shift operation (<<
).
For unsigned integers, the result is undefined if any 1 bits
are shifted out. For signed integers, the result is undefined if
any bits that disagree with the resultant sign bit are shifted out.
The type of shift_amt
is an unsigned integer with log2(@typeInfo(T).int.bits)
bits.
This is because shift_amt >= @typeInfo(T).int.bits
is undefined behavior.
comptime_int
is modeled as an integer with an infinite number of bits,
meaning that in such case, @shlExact
always produces a result and
cannot produce a compile error.
See also:
@shlWithOverflow §
@shlWithOverflow(a: anytype, shift_amt: Log2T) struct { @TypeOf(a), u1 }
Performs a << b
and returns a tuple with the result and a possible overflow bit.
The type of shift_amt
is an unsigned integer with log2(@typeInfo(@TypeOf(a)).int.bits)
bits.
This is because shift_amt >= @typeInfo(@TypeOf(a)).int.bits
is undefined behavior.
See also:
@shrExact §
@shrExact(value: T, shift_amt: Log2T) T
Performs the right shift operation (>>
). Caller guarantees
that the shift will not shift any 1 bits out.
The type of shift_amt
is an unsigned integer with log2(@typeInfo(T).int.bits)
bits.
This is because shift_amt >= @typeInfo(T).int.bits
is undefined behavior.
See also:
@shuffle §
@shuffle(comptime E: type, a: @Vector(a_len, E), b: @Vector(b_len, E), comptime mask: @Vector(mask_len, i32)) @Vector(mask_len, E)
Constructs a new vector by selecting elements from a
and
b
based on mask
.
Each element in mask
selects an element from either a
or
b
. Positive numbers select from a
starting at 0.
Negative values select from b
, starting at -1
and going down.
It is recommended to use the ~
operator for indexes from b
so that both indexes can start from 0
(i.e. ~@as(i32, 0)
is
-1
).
For each element of mask
, if it or the selected value from
a
or b
is undefined
,
then the resulting element is undefined
.
a_len
and b_len
may differ in length. Out-of-bounds element
indexes in mask
result in compile errors.
If a
or b
is undefined
, it
is equivalent to a vector of all undefined
with the same length as the other vector.
If both vectors are undefined
, @shuffle
returns
a vector with all elements undefined
.
E
must be an integer, float,
pointer, or bool
. The mask may be any vector length, and its
length determines the result length.
See also:
@sizeOf §
@sizeOf(comptime T: type) comptime_int
This function returns the number of bytes it takes to store T
in memory.
The result is a target-specific compile time constant.
This size may contain padding bytes. If there were two consecutive T in memory, the padding would be the offset
in bytes between element at index 0 and the element at index 1. For integer,
consider whether you want to use @sizeOf(T)
or
@typeInfo(T).int.bits
.
This function measures the size at runtime. For types that are disallowed at runtime, such as
comptime_int
and type
, the result is 0
.
See also:
@splat §
@splat(scalar: anytype) anytype
Produces a vector where each element is the value scalar
.
The return type and thus the length of the vector is inferred.
scalar
must be an integer, bool,
float, or pointer.
See also:
@reduce §
@reduce(comptime op: std.builtin.ReduceOp, value: anytype) E
Transforms a vector into a scalar value (of type E
)
by performing a sequential horizontal reduction of its elements using the
specified operator op
.
Not every operator is available for every vector element type:
- Every operator is available for integer vectors.
.And
,.Or
,.Xor
are additionally available forbool
vectors,.Min
,.Max
,.Add
,.Mul
are additionally available for floating point vectors,
Note that .Add
and .Mul
reductions on integral types are wrapping; when applied on floating point
types the operation associativity is preserved, unless the float mode is
set to Optimized
.
See also:
@src §
@src() std.builtin.SourceLocation
Returns a SourceLocation
struct representing the function's name and location in the source code. This must be called in a function.
@sqrt §
@sqrt(value: anytype) @TypeOf(value)
Performs the square root of a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats.
@sin §
@sin(value: anytype) @TypeOf(value)
Sine trigonometric function on a floating point number in radians. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats.
@cos §
@cos(value: anytype) @TypeOf(value)
Cosine trigonometric function on a floating point number in radians. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats.
@tan §
@tan(value: anytype) @TypeOf(value)
Tangent trigonometric function on a floating point number in radians. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats.
@exp §
@exp(value: anytype) @TypeOf(value)
Base-e exponential function on a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats.
@exp2 §
@exp2(value: anytype) @TypeOf(value)
Base-2 exponential function on a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats.
@log §
@log(value: anytype) @TypeOf(value)
Returns the natural logarithm of a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats.
@log2 §
@log2(value: anytype) @TypeOf(value)
Returns the logarithm to the base 2 of a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats.
@log10 §
@log10(value: anytype) @TypeOf(value)
Returns the logarithm to the base 10 of a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats.
@abs §
@abs(value: anytype) anytype
Returns the absolute value of an integer or a floating point number. Uses a dedicated hardware instruction when available. The return type is always an unsigned integer of the same bit width as the operand if the operand is an integer. Unsigned integer operands are supported. The builtin cannot overflow for signed integer operands.
Supports Floats, Integers and Vectors of floats or integers.
@floor §
@floor(value: anytype) @TypeOf(value)
Returns the largest integral value not greater than the given floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats.
@ceil §
@ceil(value: anytype) @TypeOf(value)
Returns the smallest integral value not less than the given floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats.
@trunc §
@trunc(value: anytype) @TypeOf(value)
Rounds the given floating point number to an integer, towards zero. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats.
@round §
@round(value: anytype) @TypeOf(value)
Rounds the given floating point number to the nearest integer. If two integers are equally close, rounds away from zero. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats.
@subWithOverflow §
@subWithOverflow(a: anytype, b: anytype) struct { @TypeOf(a, b), u1 }
Performs a - b
and returns a tuple with the result and a possible overflow bit.
@tagName §
@tagName(value: anytype) [:0]const u8
Converts an enum value or union value to a string literal representing the name.
If the enum is non-exhaustive and the tag value does not map to a name, it invokes safety-checked Undefined Behavior.
@This §
@This() type
Returns the innermost struct, enum, or union that this function call is inside. This can be useful for an anonymous struct that needs to refer to itself:
When @This()
is used at file scope, it returns a reference to the
struct that corresponds to the current file.
@trap §
@trap() noreturn
This function inserts a platform-specific trap/jam instruction which can be used to exit the program abnormally.
This may be implemented by explicitly emitting an invalid instruction which may cause an illegal instruction exception of some sort.
Unlike for @breakpoint()
, execution does not continue after this point.
Outside function scope, this builtin causes a compile error.
See also:
@truncate §
@truncate(integer: anytype) anytype
This function truncates bits from an integer type, resulting in a smaller or same-sized integer type. The return type is the inferred result type.
This function always truncates the significant bits of the integer, regardless of endianness on the target platform.
Calling @truncate
on a number out of range of the destination type is well defined and working code:
Use @intCast to convert numbers guaranteed to fit the destination type.
@Type §
@Type(comptime info: std.builtin.Type) type
This function is the inverse of @typeInfo. It reifies type information
into a type
.
It is available for the following types:
type
noreturn
void
bool
- Integers - The maximum bit count for an integer type is
65535
. - Floats
- Pointers
comptime_int
comptime_float
@TypeOf(undefined)
@TypeOf(null)
- Arrays
- Optionals
- Error Set Type
- Error Union Type
- Vectors
- opaque
anyframe
- struct
- enum
- Enum Literals
- union
- Functions
@typeInfo §
@typeInfo(comptime T: type) std.builtin.Type
Provides type reflection.
Type information of structs, unions, enums, and error sets has fields which are guaranteed to be in the same order as appearance in the source file.
Type information of structs, unions, enums, and opaques has declarations, which are also guaranteed to be in the same order as appearance in the source file.
@typeName §
@typeName(T: type) *const [N:0]u8
This function returns the string representation of a type, as an array. It is equivalent to a string literal of the type name. The returned type name is fully qualified with the parent namespace included as part of the type name with a series of dots.
@TypeOf §
@TypeOf(...) type
@TypeOf
is a special builtin function that takes any (non-zero) number of expressions
as parameters and returns the type of the result, using Peer Type Resolution.
The expressions are evaluated, however they are guaranteed to have no runtime side-effects:
@unionInit §
@unionInit(comptime Union: type, comptime active_field_name: []const u8, init_expr) Union
This is the same thing as union initialization syntax, except that the field name is a comptime-known value rather than an identifier token.
@unionInit
forwards its result location to init_expr
.
@Vector §
@Vector(len: comptime_int, Element: type) type
Creates Vectors.
@volatileCast §
@volatileCast(value: anytype) DestType
Remove volatile
qualifier from a pointer.
@workGroupId §
@workGroupId(comptime dimension: u32) u32
Returns the index of the work group in the current kernel invocation in dimension dimension
.
@workGroupSize §
@workGroupSize(comptime dimension: u32) u32
Returns the number of work items that a work group has in dimension dimension
.
@workItemId §
@workItemId(comptime dimension: u32) u32
Returns the index of the work item in the work group in dimension dimension
. This function returns values between 0
(inclusive) and @workGroupSize(dimension)
(exclusive).
Build Mode §
Zig has four build modes:
- Debug (default)
- ReleaseFast
- ReleaseSafe
- ReleaseSmall
To add standard build options to a build.zig
file:
This causes these options to be available:
- -Doptimize=Debug
- Optimizations off and safety on (default)
- -Doptimize=ReleaseSafe
- Optimizations on and safety on
- -Doptimize=ReleaseFast
- Optimizations on and safety off
- -Doptimize=ReleaseSmall
- Size optimizations on and safety off
Debug §
- Fast compilation speed
- Safety checks enabled
- Slow runtime performance
- Large binary size
- No reproducible build requirement
ReleaseFast §
- Fast runtime performance
- Safety checks disabled
- Slow compilation speed
- Large binary size
- Reproducible build
ReleaseSafe §
- Medium runtime performance
- Safety checks enabled
- Slow compilation speed
- Large binary size
- Reproducible build
ReleaseSmall §
- Medium runtime performance
- Safety checks disabled
- Slow compilation speed
- Small binary size
- Reproducible build
See also:
Single Threaded Builds §
Zig has a compile option -fsingle-threaded which has the following effects:
- All Thread Local Variables are treated as regular Container Level Variables.
- The overhead of Async Functions becomes equivalent to function call overhead.
- The
@import("builtin").single_threaded
becomestrue
and therefore various userland APIs which read this variable become more efficient. For examplestd.Mutex
becomes an empty data structure and all of its functions become no-ops.
Undefined Behavior §
Zig has many instances of undefined behavior. If undefined behavior is detected at compile-time, Zig emits a compile error and refuses to continue. Most undefined behavior that cannot be detected at compile-time can be detected at runtime. In these cases, Zig has safety checks. Safety checks can be disabled on a per-block basis with @setRuntimeSafety. The ReleaseFast and ReleaseSmall build modes disable all safety checks (except where overridden by @setRuntimeSafety) in order to facilitate optimizations.
When a safety check fails, Zig crashes with a stack trace, like this:
Reaching Unreachable Code §
At compile-time:
At runtime:
Index out of Bounds §
At compile-time:
At runtime:
Cast Negative Number to Unsigned Integer §
At compile-time:
At runtime:
To obtain the maximum value of an unsigned integer, use std.math.maxInt
.
Cast Truncates Data §
At compile-time:
At runtime:
To truncate bits, use @truncate.
Integer Overflow §
Default Operations §
The following operators can cause integer overflow:
+
(addition)-
(subtraction)-
(negation)*
(multiplication)/
(division)- @divTrunc (division)
- @divFloor (division)
- @divExact (division)
Example with addition at compile-time:
At runtime:
Standard Library Math Functions §
These functions provided by the standard library return possible errors.
@import("std").math.add
@import("std").math.sub
@import("std").math.mul
@import("std").math.divTrunc
@import("std").math.divFloor
@import("std").math.divExact
@import("std").math.shl
Example of catching an overflow for addition:
Builtin Overflow Functions §
These builtins return a tuple containing whether there was an overflow
(as a u1
) and the possibly overflowed bits of the operation:
Example of @addWithOverflow:
Wrapping Operations §
These operations have guaranteed wraparound semantics.
+%
(wraparound addition)-%
(wraparound subtraction)-%
(wraparound negation)*%
(wraparound multiplication)
Exact Left Shift Overflow §
At compile-time:
At runtime:
Exact Right Shift Overflow §
At compile-time:
At runtime:
Division by Zero §
At compile-time:
At runtime:
Remainder Division by Zero §
At compile-time:
At runtime:
Exact Division Remainder §
At compile-time:
At runtime:
Attempt to Unwrap Null §
At compile-time:
At runtime:
One way to avoid this crash is to test for null instead of assuming non-null, with
the if
expression:
See also:
Attempt to Unwrap Error §
At compile-time:
At runtime:
One way to avoid this crash is to test for an error instead of assuming a successful result, with
the if
expression:
See also:
Invalid Error Code §
At compile-time:
At runtime:
Invalid Enum Cast §
At compile-time:
At runtime:
Invalid Error Set Cast §
At compile-time:
At runtime:
Incorrect Pointer Alignment §
At compile-time:
At runtime:
Wrong Union Field Access §
At compile-time:
At runtime:
This safety is not available for extern
or packed
unions.
To change the active field of a union, assign the entire union, like this:
To change the active field of a union when a meaningful value for the field is not known, use undefined, like this:
See also:
Out of Bounds Float to Integer Cast §
This happens when casting a float to an integer where the float has a value outside the integer type's range.
At compile-time:
At runtime:
Pointer Cast Invalid Null §
This happens when casting a pointer with the address 0 to a pointer which may not have the address 0. For example, C Pointers, Optional Pointers, and allowzero pointers allow address zero, but normal Pointers do not.
At compile-time:
At runtime:
Memory §
The Zig language performs no memory management on behalf of the programmer. This is why Zig has no runtime, and why Zig code works seamlessly in so many environments, including real-time software, operating system kernels, embedded devices, and low latency servers. As a consequence, Zig programmers must always be able to answer the question:
Like Zig, the C programming language has manual memory management. However, unlike Zig,
C has a default allocator - malloc
, realloc
, and free
.
When linking against libc, Zig exposes this allocator with std.heap.c_allocator
.
However, by convention, there is no default allocator in Zig. Instead, functions which need to
allocate accept an Allocator
parameter. Likewise, data structures such as
std.ArrayList
accept an Allocator
parameter in
their initialization functions:
In the above example, 100 bytes of stack memory are used to initialize a
FixedBufferAllocator
, which is then passed to a function.
As a convenience there is a global FixedBufferAllocator
available for quick tests at std.testing.allocator
,
which will also perform basic leak detection.
Zig has a general purpose allocator available to be imported
with std.heap.GeneralPurposeAllocator
. However, it is still recommended to
follow the Choosing an Allocator guide.
Choosing an Allocator §
What allocator to use depends on a number of factors. Here is a flow chart to help you decide:
-
Are you making a library? In this case, best to accept an
Allocator
as a parameter and allow your library's users to decide what allocator to use. - Are you linking libc? In this case,
std.heap.c_allocator
is likely the right choice, at least for your main allocator. -
Need to use the same allocator in multiple threads? Use one of your choice
wrapped around
std.heap.ThreadSafeAllocator
-
Is the maximum number of bytes that you will need bounded by a number known at
comptime? In this case, use
std.heap.FixedBufferAllocator
. -
Is your program a command line application which runs from start to end without any fundamental
cyclical pattern (such as a video game main loop, or a web server request handler),
such that it would make sense to free everything at once at the end?
In this case, it is recommended to follow this pattern:
When using this kind of allocator, there is no need to free anything manually. Everything
gets freed at once with the call to
arena.deinit()
. -
Are the allocations part of a cyclical pattern such as a video game main loop, or a web
server request handler? If the allocations can all be freed at once, at the end of the cycle,
for example once the video game frame has been fully rendered, or the web server request has
been served, then
std.heap.ArenaAllocator
is a great candidate. As demonstrated in the previous bullet point, this allows you to free entire arenas at once. Note also that if an upper bound of memory can be established, thenstd.heap.FixedBufferAllocator
can be used as a further optimization. -
Are you writing a test, and you want to make sure
error.OutOfMemory
is handled correctly? In this case, usestd.testing.FailingAllocator
. -
Are you writing a test? In this case, use
std.testing.allocator
. -
Finally, if none of the above apply, you need a general purpose allocator.
Zig's general purpose allocator is available as a function that takes a comptime
struct of configuration options and returns a type.
Generally, you will set up one
std.heap.GeneralPurposeAllocator
in your main function, and then pass it or sub-allocators around to various parts of your application. - You can also consider Implementing an Allocator.
Where are the bytes? §
String literals such as "hello"
are in the global constant data section.
This is why it is an error to pass a string literal to a mutable slice, like this:
However if you make the slice constant, then it works:
Just like string literals, const
declarations, when the value is known at comptime,
are stored in the global constant data section. Also Compile Time Variables are stored
in the global constant data section.
var
declarations inside functions are stored in the function's stack frame. Once a function returns,
any Pointers to variables in the function's stack frame become invalid references, and
dereferencing them becomes unchecked Undefined Behavior.
var
declarations at the top level or in struct declarations are stored in the global
data section.
The location of memory allocated with allocator.alloc
or
allocator.create
is determined by the allocator's implementation.
TODO: thread local variables
Implementing an Allocator §
Zig programmers can implement their own allocators by fulfilling the Allocator interface.
In order to do this one must read carefully the documentation comments in std/mem.zig and
then supply a allocFn
and a resizeFn
.
There are many example allocators to look at for inspiration. Look at std/heap.zig and
std.heap.GeneralPurposeAllocator
.
Heap Allocation Failure §
Many programming languages choose to handle the possibility of heap allocation failure by
unconditionally crashing. By convention, Zig programmers do not consider this to be a
satisfactory solution. Instead, error.OutOfMemory
represents
heap allocation failure, and Zig libraries return this error code whenever heap allocation
failure prevented an operation from completing successfully.
Some have argued that because some operating systems such as Linux have memory overcommit enabled by default, it is pointless to handle heap allocation failure. There are many problems with this reasoning:
- Only some operating systems have an overcommit feature.
- Linux has it enabled by default, but it is configurable.
- Windows does not overcommit.
- Embedded systems do not have overcommit.
- Hobby operating systems may or may not have overcommit.
- For real-time systems, not only is there no overcommit, but typically the maximum amount of memory per application is determined ahead of time.
- When writing a library, one of the main goals is code reuse. By making code handle allocation failure correctly, a library becomes eligible to be reused in more contexts.
- Although some software has grown to depend on overcommit being enabled, its existence is the source of countless user experience disasters. When a system with overcommit enabled, such as Linux on default settings, comes close to memory exhaustion, the system locks up and becomes unusable. At this point, the OOM Killer selects an application to kill based on heuristics. This non-deterministic decision often results in an important process being killed, and often fails to return the system back to working order.
Recursion §
Recursion is a fundamental tool in modeling software. However it has an often-overlooked problem: unbounded memory allocation.
Recursion is an area of active experimentation in Zig and so the documentation here is not final. You can read a summary of recursion status in the 0.3.0 release notes.
The short summary is that currently recursion works normally as you would expect. Although Zig code is not yet protected from stack overflow, it is planned that a future version of Zig will provide such protection, with some degree of cooperation from Zig code required.
Lifetime and Ownership §
It is the Zig programmer's responsibility to ensure that a pointer is not accessed when the memory pointed to is no longer available. Note that a slice is a form of pointer, in that it references other memory.
In order to prevent bugs, there are some helpful conventions to follow when dealing with pointers. In general, when a function returns a pointer, the documentation for the function should explain who "owns" the pointer. This concept helps the programmer decide when it is appropriate, if ever, to free the pointer.
For example, the function's documentation may say "caller owns the returned memory", in which case
the code that calls the function must have a plan for when to free that memory. Probably in this situation,
the function will accept an Allocator
parameter.
Sometimes the lifetime of a pointer may be more complicated. For example, the
std.ArrayList(T).items
slice has a lifetime that remains
valid until the next time the list is resized, such as by appending new elements.
The API documentation for functions and data structures should take great care to explain the ownership and lifetime semantics of pointers. Ownership determines whose responsibility it is to free the memory referenced by the pointer, and lifetime determines the point at which the memory becomes inaccessible (lest Undefined Behavior occur).
Compile Variables §
Compile variables are accessible by importing the "builtin"
package,
which the compiler makes available to every Zig source file. It contains
compile-time constants such as the current target, endianness, and release mode.
Example of what is imported with @import("builtin")
:
See also:
Root Source File §
TODO: explain how root source file finds other files
TODO: pub fn main
TODO: pub fn panic
TODO: if linking with libc you can use export fn main
TODO: order independent top level declarations
TODO: lazy analysis
TODO: using comptime { _ = @import() }
Zig Build System §
The Zig Build System provides a cross-platform, dependency-free way to declare the logic required to build a project. With this system, the logic to build a project is written in a build.zig file, using the Zig Build System API to declare and configure build artifacts and other tasks.
Some examples of tasks the build system can help with:
- Performing tasks in parallel and caching the results.
- Depending on other projects.
- Providing a package for other projects to depend on.
- Creating build artifacts by executing the Zig compiler. This includes building Zig source code as well as C and C++ source code.
- Capturing user-configured options and using those options to configure the build.
- Surfacing build configuration as comptime values by providing a file that can be imported by Zig code.
- Caching build artifacts to avoid unnecessarily repeating steps.
- Executing build artifacts or system-installed tools.
- Running tests and verifying the output of executing a build artifact matches the expected value.
- Running
zig fmt
on a codebase or a subset of it. - Custom tasks.
To use the build system, run zig build --help to see a command-line usage help menu. This will include project-specific options that were declared in the build.zig script.
For the time being, the build system documentation is hosted externally: Build System Documentation
C §
Although Zig is independent of C, and, unlike most other languages, does not depend on libc, Zig acknowledges the importance of interacting with existing C code.
There are a few ways that Zig facilitates C interop.
C Type Primitives §
These have guaranteed C ABI compatibility and can be used like any other type.
c_char
c_short
c_ushort
c_int
c_uint
c_long
c_ulong
c_longlong
c_ulonglong
c_longdouble
To interop with the C void
type, use anyopaque
.
See also:
Import from C Header File §
The @cImport
builtin function can be used
to directly import symbols from .h
files:
The @cImport
function takes an expression as a parameter.
This expression is evaluated at compile-time and is used to control
preprocessor directives and include multiple .h
files:
See also:
C Translation CLI §
Zig's C translation capability is available as a CLI tool via zig translate-c. It requires a single filename as an argument. It may also take a set of optional flags that are forwarded to clang. It writes the translated file to stdout.
Command line flags §
- -I: Specify a search directory for include files. May be used multiple times. Equivalent to clang's -I flag. The current directory is not included by default; use -I. to include it.
- -D: Define a preprocessor macro. Equivalent to clang's -D flag.
- -cflags [flags] --: Pass arbitrary additional command line flags to clang. Note: the list of flags must end with --
- -target: The target triple for the translated Zig code. If no target is specified, the current host target will be used.
Using -target and -cflags §
Important! When translating C code with zig translate-c, you must use the same -target triple that you will use when compiling the translated code. In addition, you must ensure that the -cflags used, if any, match the cflags used by code on the target system. Using the incorrect -target or -cflags could result in clang or Zig parse failures, or subtle ABI incompatibilities when linking with C code.
@cImport vs translate-c §
@cImport
and zig translate-c use the same underlying
C translation functionality, so on a technical level they are equivalent. In practice,
@cImport
is useful as a way to quickly and easily access numeric constants, typedefs,
and record types without needing any extra setup. If you need to pass cflags
to clang, or if you would like to edit the translated code, it is recommended to use
zig translate-c and save the results to a file. Common reasons for editing
the generated code include: changing anytype
parameters in function-like macros to more
specific types; changing [*c]T
pointers to [*]T
or
*T
pointers for improved type safety; and
enabling or disabling runtime safety within specific functions.
See also:
- Targets
- C Type Primitives
- Pointers
- C Pointers
- Import from C Header File
- @cInclude
- @cImport
- @setRuntimeSafety
C Translation Caching §
The C translation feature (whether used via zig translate-c or
@cImport
) integrates with the Zig caching system. Subsequent runs with
the same source file, target, and cflags will use the cache instead of repeatedly translating
the same code.
To see where the cached files are stored when compiling code that uses @cImport
,
use the --verbose-cimport flag:
cimport.h
contains the file to translate (constructed from calls to
@cInclude
, @cDefine
, and @cUndef
),
cimport.h.d
is the list of file dependencies, and
cimport.zig
contains the translated output.
See also:
Translation failures §
Some C constructs cannot be translated to Zig - for example, goto, structs with bitfields, and token-pasting macros. Zig employs demotion to allow translation to continue in the face of non-translatable entities.
Demotion comes in three varieties - opaque, extern, and
@compileError
.
C structs and unions that cannot be translated correctly will be translated as opaque{}
.
Functions that contain opaque types or code constructs that cannot be translated will be demoted
to extern
declarations.
Thus, non-translatable types can still be used as pointers, and non-translatable functions
can be called so long as the linker is aware of the compiled function.
@compileError
is used when top-level definitions (global variables,
function prototypes, macros) cannot be translated or demoted. Since Zig uses lazy analysis for
top-level declarations, untranslatable entities will not cause a compile error in your code unless
you actually use them.
See also:
C Macros §
C Translation makes a best-effort attempt to translate function-like macros into equivalent
Zig functions. Since C macros operate at the level of lexical tokens, not all C macros
can be translated to Zig. Macros that cannot be translated will be demoted to
@compileError
. Note that C code which uses macros will be
translated without any additional issues (since Zig operates on the pre-processed source
with macros expanded). It is merely the macros themselves which may not be translatable to
Zig.
Consider the following example:
Note that foo
was translated correctly despite using a non-translatable
macro. MAKELOCAL
was demoted to @compileError
since
it cannot be expressed as a Zig function; this simply means that you cannot directly use
MAKELOCAL
from Zig.
See also:
C Pointers §
This type is to be avoided whenever possible. The only valid reason for using a C pointer is in auto-generated code from translating C code.
When importing C header files, it is ambiguous whether pointers should be translated as
single-item pointers (*T
) or many-item pointers ([*]T
).
C pointers are a compromise so that Zig code can utilize translated header files directly.
[*c]T
- C pointer.
- Supports all the syntax of the other two pointer types (
*T
) and ([*]T
). - Coerces to other pointer types, as well as Optional Pointers. When a C pointer is coerced to a non-optional pointer, safety-checked Undefined Behavior occurs if the address is 0.
- Allows address 0. On non-freestanding targets, dereferencing address 0 is safety-checked
Undefined Behavior. Optional C pointers introduce another bit to keep track of
null, just like
?usize
. Note that creating an optional C pointer is unnecessary as one can use normal Optional Pointers. - Supports Type Coercion to and from integers.
- Supports comparison with integers.
- Does not support Zig-only pointer attributes such as alignment. Use normal Pointers please!
When a C pointer is pointing to a single struct (not an array), dereference the C pointer to access the struct's fields or member data. That syntax looks like this:
ptr_to_struct.*.struct_member
This is comparable to doing ->
in C.
When a C pointer is pointing to an array of structs, the syntax reverts to this:
ptr_to_struct_array[index].struct_member
C Variadic Functions §
Zig supports extern variadic functions.
Variadic functions can be implemented using @cVaStart, @cVaEnd, @cVaArg and @cVaCopy.
Exporting a C Library §
One of the primary use cases for Zig is exporting a library with the C ABI for other programming languages
to call into. The export
keyword in front of functions, variables, and types causes them to
be part of the library API:
To make a static library:
To make a shared library:
Here is an example with the Zig Build System:
See also:
Mixing Object Files §
You can mix Zig object files with any other object files that respect the C ABI. Example:
See also:
WebAssembly §
Zig supports building for WebAssembly out of the box.
Freestanding §
For host environments like the web browser and nodejs, build as an executable using the freestanding OS target. Here's an example of running Zig code compiled to WebAssembly with nodejs.
WASI §
Zig's support for WebAssembly System Interface (WASI) is under active development. Example of using the standard library and reading command line arguments:
A more interesting example would be extracting the list of preopens from the runtime.
This is now supported in the standard library via std.fs.wasi.Preopens
:
Targets §
Target refers to the computer that will be used to run an executable. It is composed of the CPU architecture, the set of enabled CPU features, operating system, minimum and maximum operating system version, ABI, and ABI version.
Zig is a general-purpose programming language which means that it is designed to
generate optimal code for a large set of targets. The command zig targets
provides information about all of the targets the compiler is aware of.
When no target option is provided to the compiler, the default choice
is to target the host computer, meaning that the
resulting executable will be unsuitable for copying to a different
computer. In order to copy an executable to another computer, the compiler
needs to know about the target requirements via the -target
option.
The Zig Standard Library (@import("std")
) has
cross-platform abstractions, making the same source code viable on many targets.
Some code is more portable than other code. In general, Zig code is extremely
portable compared to other programming languages.
Each platform requires its own implementations to make Zig's cross-platform abstractions work. These implementations are at various degrees of completion. Each tagged release of the compiler comes with release notes that provide the full support table for each target.
Style Guide §
These coding conventions are not enforced by the compiler, but they are shipped in this documentation along with the compiler in order to provide a point of reference, should anyone wish to point to an authority on agreed upon Zig coding style.
Avoid Redundancy in Names §
Avoid these words in type names:
- Value
- Data
- Context
- Manager
- utils, misc, or somebody's initials
Everything is a value, all types are data, everything is context, all logic manages state. Nothing is communicated by using a word that applies to all types.
Temptation to use "utilities", "miscellaneous", or somebody's initials is a failure to categorize, or more commonly, overcategorization. Such declarations can live at the root of a module that needs them with no namespace needed.
Avoid Redundant Names in Fully-Qualified Namespaces §
Every declaration is assigned a fully qualified namespace by the compiler, creating a tree structure. Choose names based on the fully-qualified namespace, and avoid redundant name segments.
In this example, "json" is repeated in the fully-qualified namespace. The solution
is to delete Json
from JsonValue
. In this example we have
an empty struct named json
but remember that files also act
as part of the fully-qualified namespace.
This example is an exception to the rule specified in Avoid Redundancy in Names. The meaning of the type has been reduced to its core: it is a json value. The name cannot be any more specific without being incorrect.
Whitespace §
- 4 space indentation
- Open braces on same line, unless you need to wrap.
- If a list of things is longer than 2, put each item on its own line and exercise the ability to put an extra comma at the end.
- Line length: aim for 100; use common sense.
Names §
Roughly speaking: camelCaseFunctionName
, TitleCaseTypeName
,
snake_case_variable_name
. More precisely:
-
If
x
is atype
thenx
should beTitleCase
, unless it is astruct
with 0 fields and is never meant to be instantiated, in which case it is considered to be a "namespace" and usessnake_case
. -
If
x
is callable, andx
's return type istype
, thenx
should beTitleCase
. -
If
x
is otherwise callable, thenx
should becamelCase
. -
Otherwise,
x
should besnake_case
.
Acronyms, initialisms, proper nouns, or any other word that has capitalization rules in written English are subject to naming conventions just like any other word. Even acronyms that are only 2 letters long are subject to these conventions.
File names fall into two categories: types and namespaces. If the file
(implicitly a struct) has top level fields, it should be named like any
other struct with fields using TitleCase
. Otherwise,
it should use snake_case
. Directory names should be
snake_case
.
These are general rules of thumb; if it makes sense to do something different,
do what makes sense. For example, if there is an established convention such as
ENOENT
, follow the established convention.
Examples §
See the Zig Standard Library for more examples.
Doc Comment Guidance §
- Omit any information that is redundant based on the name of the thing being documented.
- Duplicating information onto multiple similar functions is encouraged because it helps IDEs and other tools provide better help text.
- Use the word assume to indicate invariants that cause Undefined Behavior when violated.
- Use the word assert to indicate invariants that cause safety-checked Undefined Behavior when violated.
Source Encoding §
Zig source code is encoded in UTF-8. An invalid UTF-8 byte sequence results in a compile error.
Throughout all zig source code (including in comments), some code points are never allowed:
- Ascii control characters, except for U+000a (LF), U+000d (CR), and U+0009 (HT): U+0000 - U+0008, U+000b - U+000c, U+000e - U+0001f, U+007f.
- Non-Ascii Unicode line endings: U+0085 (NEL), U+2028 (LS), U+2029 (PS).
LF (byte value 0x0a, code point U+000a, '\n'
) is the line terminator in Zig source code.
This byte value terminates every line of zig source code except the last line of the file.
It is recommended that non-empty source files end with an empty line, which means the last byte would be 0x0a (LF).
Each LF may be immediately preceded by a single CR (byte value 0x0d, code point U+000d, '\r'
)
to form a Windows style line ending, but this is discouraged. Note that in multiline strings, CRLF sequences will
be encoded as LF when compiled into a zig program.
A CR in any other context is not allowed.
HT hard tabs (byte value 0x09, code point U+0009, '\t'
) are interchangeable with
SP spaces (byte value 0x20, code point U+0020, ' '
) as a token separator,
but use of hard tabs is discouraged. See Grammar.
For compatibility with other tools, the compiler ignores a UTF-8-encoded byte order mark (U+FEFF) if it is the first Unicode code point in the source text. A byte order mark is not allowed anywhere else in the source.
Note that running zig fmt on a source file will implement all recommendations mentioned here.
Note that a tool reading Zig source code can make assumptions if the source code is assumed to be correct Zig code.
For example, when identifying the ends of lines, a tool can use a naive search such as /\n/
,
or an advanced
search such as /\r\n?|[\n\u0085\u2028\u2029]/
, and in either case line endings will be correctly identified.
For another example, when identifying the whitespace before the first token on a line,
a tool can either use a naive search such as /[ \t]/
,
or an advanced search such as /\s/
,
and in either case whitespace will be correctly identified.
Keyword Reference §
Keyword | Description |
---|---|
|
The addrspace keyword.
|
|
align can be used to specify the alignment of a pointer.
It can also be used after a variable or function declaration to specify the alignment of pointers to that variable or function.
|
|
The pointer attribute allowzero allows a pointer to have address zero.
|
|
The boolean operator and .
|
|
anyframe can be used as a type for variables which hold pointers to function frames.
|
|
Function parameters can be declared with anytype in place of the type.
The type will be inferred where the function is called.
|
|
asm begins an inline assembly expression. This allows for directly controlling the machine code generated on compilation.
|
|
async can be used before a function call to get a pointer to the function's frame when it suspends.
|
|
await can be used to suspend the current function until the frame provided after the await completes.
await copies the value returned from the target function's frame to the caller.
|
|
break can be used with a block label to return a value from the block.
It can also be used to exit a loop before iteration completes naturally.
|
|
callconv can be used to specify the calling convention in a function type.
|
|
catch can be used to evaluate an expression if the expression before it evaluates to an error.
The expression after the catch can optionally capture the error value.
|
|
comptime before a declaration can be used to label variables or function parameters as known at compile time.
It can also be used to guarantee an expression is run at compile time.
|
|
const declares a variable that can not be modified.
Used as a pointer attribute, it denotes the value referenced by the pointer cannot be modified.
|
|
continue can be used in a loop to jump back to the beginning of the loop.
|
|
defer will execute an expression when control flow leaves the current block.
|
|
else can be used to provide an alternate branch for if , switch ,
while , and for expressions.
|
|
enum defines an enum type.
|
|
errdefer will execute an expression when control flow leaves the current block if the function returns an error, the errdefer expression can capture the unwrapped value.
|
|
error defines an error type.
|
|
export makes a function or variable externally visible in the generated object file.
Exported functions default to the C calling convention.
|
|
extern can be used to declare a function or variable that will be resolved at link time, when linking statically
or at runtime, when linking dynamically.
|
|
fn declares a function.
|
|
A for expression can be used to iterate over the elements of a slice, array, or tuple.
|
|
An if expression can test boolean expressions, optional values, or error unions.
For optional values or error unions, the if expression can capture the unwrapped value.
|
|
inline can be used to label a loop expression such that it will be unrolled at compile time.
It can also be used to force a function to be inlined at all call sites.
|
|
The linksection keyword can be used to specify what section the function or global variable will be put into (e.g. .text ).
|
|
The noalias keyword.
|
|
noinline disallows function to be inlined in all call sites.
|
|
The nosuspend keyword can be used in front of a block, statement or expression, to mark a scope where no suspension points are reached.
In particular, inside a nosuspend scope:
nosuspend scope does not cause the enclosing function to become an async function.
|
|
opaque defines an opaque type.
|
|
The boolean operator or .
|
|
orelse can be used to evaluate an expression if the expression before it evaluates to null.
|
|
The packed keyword before a struct definition changes the struct's in-memory layout
to the guaranteed packed layout.
|
|
The pub in front of a top level declaration makes the declaration available
to reference from a different file than the one it is declared in.
|
|
resume will continue execution of a function frame after the point the function was suspended.
|
|
return exits a function with a value.
|
|
struct defines a struct.
|
|
suspend will cause control flow to return to the call site or resumer of the function.
suspend can also be used before a block within a function,
to allow the function access to its frame before control flow returns to the call site.
|
|
A switch expression can be used to test values of a common type.
switch cases can capture field values of a Tagged union.
|
|
The test keyword can be used to denote a top-level block of code
used to make sure behavior meets expectations.
|
|
threadlocal can be used to specify a variable as thread-local.
|
|
try evaluates an error union expression.
If it is an error, it returns from the current function with the same error.
Otherwise, the expression results in the unwrapped value.
|
|
union defines a union.
|
|
unreachable can be used to assert that control flow will never happen upon a particular location.
Depending on the build mode, unreachable may emit a panic.
|
|
usingnamespace is a top-level declaration that imports all the public declarations of the operand,
which must be a struct, union, or enum, into the current scope.
|
|
var declares a variable that may be modified.
|
|
volatile can be used to denote loads or stores of a pointer have side effects.
It can also modify an inline assembly expression to denote it has side effects.
|
|
A while expression can be used to repeatedly test a boolean, optional, or error union expression,
and cease looping when that expression evaluates to false, null, or an error, respectively.
|
Appendix §
Containers §
A container in Zig is any syntactical construct that acts as a namespace to hold variable and function declarations. Containers are also type definitions which can be instantiated. Structs, enums, unions, opaques, and even Zig source files themselves are containers.
Although containers (except Zig source files) use curly braces to surround their definition, they should not be confused with blocks or functions. Containers do not contain statements.
Grammar §
Zen §
- Communicate intent precisely.
- Edge cases matter.
- Favor reading code over writing code.
- Only one obvious way to do things.
- Runtime crashes are better than bugs.
- Compile errors are better than runtime crashes.
- Incremental improvements.
- Avoid local maximums.
- Reduce the amount one must remember.
- Focus on code rather than style.
- Resource allocation may fail; resource deallocation must succeed.
- Memory is a resource.
- Together we serve the users.