0.1.1 | 0.2.0 | 0.3.0 | 0.4.0 | 0.5.0 | 0.6.0 | 0.7.1 | 0.8.1 | 0.9.1 | 0.10.1 | 0.11.0 | 0.12.0 | master

Introduction

Zig is an open-source programming language designed for robustness, optimality, and clarity.

Often the most efficient way to learn something new is to see examples, so this documentation shows how to use each of Zig's features. It is all on one page so you can search with your browser's search tool.

The code samples in this document are compiled and tested as part of the main test suite of Zig. This HTML document depends on no external files, so you can use it offline.

Hello World

hello.zig

const std = @import("std");

pub fn main() !void {
    // If this program is run without stdout attached, exit with an error.
    var stdout_file = try std.io.getStdOut();
    // If this program encounters pipe failure when printing to stdout, exit
    // with an error.
    try stdout_file.write("Hello, world!\n");
}
$ zig build-exe hello.zig
$ ./hello
Hello, world!

Usually you don't want to write to stdout. You want to write to stderr. And you don't care if it fails. It's more like a warning message that you want to emit. For that you can use a simpler API:

hello.zig

const warn = @import("std").debug.warn;

pub fn main() void {
    warn("Hello, world!\n");
}
$ zig build-exe hello.zig
$ ./hello
Hello, world!

Note that we also left off the ! from the return type. In Zig, if your main function cannot fail, you must use the void return type.

See also:

Values

values.zig

const std = @import("std");
const warn = std.debug.warn;
const os = std.os;
const assert = std.debug.assert;

pub fn main() void {
    // integers
    const one_plus_one: i32 = 1 + 1;
    warn("1 + 1 = {}\n", one_plus_one);

    // floats
    const seven_div_three: f32 = 7.0 / 3.0;
    warn("7.0 / 3.0 = {}\n", seven_div_three);

    // boolean
    warn("{}\n{}\n{}\n",
        true and false,
        true or false,
        !true);
    
    // nullable
    var nullable_value: ?[]const u8 = null;
    assert(nullable_value == null);

    warn("\nnullable 1\ntype: {}\nvalue: {}\n",
        @typeName(@typeOf(nullable_value)), nullable_value);

    nullable_value = "hi";
    assert(nullable_value != null);

    warn("\nnullable 2\ntype: {}\nvalue: {}\n",
        @typeName(@typeOf(nullable_value)), nullable_value);

    // error union
    var number_or_error: error!i32 = error.ArgNotFound;

    warn("\nerror union 1\ntype: {}\nvalue: {}\n",
        @typeName(@typeOf(number_or_error)), number_or_error);
 
    number_or_error = 1234;

    warn("\nerror union 2\ntype: {}\nvalue: {}\n",
        @typeName(@typeOf(number_or_error)), number_or_error);
}
$ zig build-exe values.zig
$ ./values
1 + 1 = 2
7.0 / 3.0 = 2.33333325
false
true
false

nullable 1
type: ?[]const u8
value: null

nullable 2
type: ?[]const u8
value: hi

error union 1
type: error!i32
value: error.ArgNotFound

error union 2
type: error!i32
value: 1234

Primitive Types

Name C Equivalent Description
i2 (none) signed 2-bit integer
u2 (none) unsigned 2-bit integer
i3 (none) signed 3-bit integer
u3 (none) unsigned 3-bit integer
i4 (none) signed 4-bit integer
u4 (none) unsigned 4-bit integer
i5 (none) signed 5-bit integer
u5 (none) unsigned 5-bit integer
i6 (none) signed 6-bit integer
u6 (none) unsigned 6-bit integer
i7 (none) signed 7-bit integer
u7 (none) unsigned 7-bit integer
i8 int8_t signed 8-bit integer
u8 uint8_t unsigned 8-bit integer
i16 int16_t signed 16-bit integer
u16 uint16_t unsigned 16-bit integer
i32 int32_t signed 32-bit integer
u32 uint32_t unsigned 32-bit integer
i64 int64_t signed 64-bit integer
u64 uint64_t unsigned 64-bit integer
i128 __int128 signed 128-bit integer
u128 unsigned __int128 unsigned 128-bit integer
isize intptr_t signed pointer sized integer
usize uintptr_t unsigned pointer sized integer
c_short short for ABI compatibility with C
c_ushort unsigned short for ABI compatibility with C
c_int int for ABI compatibility with C
c_uint unsigned int for ABI compatibility with C
c_long long for ABI compatibility with C
c_ulong unsigned long for ABI compatibility with C
c_longlong long long for ABI compatibility with C
c_ulonglong unsigned long long for ABI compatibility with C
c_longdouble long double for ABI compatibility with C
c_void void for ABI compatibility with C
f32 float 32-bit floating point (23-bit mantissa)
f64 double 64-bit floating point (52-bit mantissa)
f128 (none) 128-bit floating point (112-bit mantissa)
bool bool true or false
void (none) 0 bit type
noreturn (none) the type of break, continue, return, unreachable, and while (true) {}
type (none) the type of types
error (none) an error code

See also:

Primitive Values

Name Description
true and false bool values
null used to set a nullable type to null
undefined used to leave a value unspecified
this refers to the thing in immediate scope

See also:

String Literals

test.zig

const assert = @import("std").debug.assert;
const mem = @import("std").mem;

test "string literals" {
    // In Zig a string literal is an array of bytes.
    const normal_bytes = "hello";
    assert(@typeOf(normal_bytes) == [5]u8);
    assert(normal_bytes.len == 5);
    assert(normal_bytes[1] == 'e');
    assert('e' == '\x65');
    assert(mem.eql(u8, "hello", "h\x65llo"));

    // A C string literal is a null terminated pointer.
    const null_terminated_bytes = c"hello";
    assert(@typeOf(null_terminated_bytes) == &const u8);
    assert(null_terminated_bytes[5] == 0);
}
$ zig test test.zig
Test 1/1 string literals...OK

See also:

Escape Sequences

Escape Sequence Name
\n Newline
\r Carriage Return
\t Tab
\\ Backslash
\' Single Quote
\" Double Quote
\xNN hexadecimal 8-bit character code (2 digits)
\uNNNN hexadecimal 16-bit Unicode character code UTF-8 encoded (4 digits)
\UNNNNNN hexadecimal 24-bit Unicode character code UTF-8 encoded (6 digits)

Note that the maximum valid Unicode point is 0x10ffff.

Multiline String Literals

Multiline string literals have no escapes and can span across multiple lines. To start a multiline string literal, use the \\ token. Just like a comment, the string literal goes until the end of the line. The end of the line is not included in the string literal. However, if the next line begins with \\ then a newline is appended and the string literal continues.

const hello_world_in_c =
    \\#include <stdio.h>
    \\
    \\int main(int argc, char **argv) {
    \\    printf("hello world\n");
    \\    return 0;
    \\}
;

For a multiline C string literal, prepend c to each \\:

const c_string_literal =
    c\\#include <stdio.h>
    c\\
    c\\int main(int argc, char **argv) {
    c\\    printf("hello world\n");
    c\\    return 0;
    c\\}
;

In this example the variable c_string_literal has type &const char and has a terminating null byte.

See also:

Assignment

Use const to assign a value to an identifier:

test.zig

const x = 1234;

fn foo() void {
    // It works at global scope as well as inside functions.
    const y = 5678;

    // Once assigned, an identifier cannot be changed.
    y += 1;
}

test "assignment" {
    foo();
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:8:7: error: cannot assign to constant
    y += 1;
      ^

If you need a variable that you can modify, use var:

test.zig

const assert = @import("std").debug.assert;

test "var" {
    var y: i32 = 5678;

    y += 1;

    assert(y == 5679);
}
$ zig test test.zig
Test 1/1 var...OK

Variables must be initialized:

test.zig

test "initialization" {
    var x: i32;

    x = 1;
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:2:5: error: variables must be initialized
    var x: i32;
    ^
/home/andy/dev/zig/docgen_tmp/test.zig:4:5: error: use of undeclared identifier 'x'
    x = 1;
    ^

Use undefined to leave variables uninitialized:

test.zig

const assert = @import("std").debug.assert;

test "init with undefined" {
    var x: i32 = undefined;
    x = 1;
    assert(x == 1);
}
$ zig test test.zig
Test 1/1 init with undefined...OK

Integers

Integer Literals

const decimal_int = 98222;
const hex_int = 0xff;
const another_hex_int = 0xFF;
const octal_int = 0o755;
const binary_int = 0b11110000;

Runtime Integer Values

Integer literals have no size limitation, and if any undefined behavior occurs, the compiler catches it.

However, once an integer value is no longer known at compile-time, it must have a known size, and is vulnerable to undefined behavior.

fn divide(a: i32, b: i32) i32 {
    return a / b;
}

In this function, values a and b are known only at runtime, and thus this division operation is vulnerable to both integer overflow and division by zero.

Operators such as + and - cause undefined behavior on integer overflow. Also available are operations such as +% and -% which are defined to have wrapping arithmetic on all targets.

See also:

Floats

Float Literals

const floating_point = 123.0E+77;
const another_float = 123.0;
const yet_another = 123.0e+77;

const hex_floating_point = 0x103.70p-5;
const another_hex_float = 0x103.70;
const yet_another_hex_float = 0x103.70P-5;

Floating Point Operations

By default floating point operations use Optimized mode, but you can switch to Strict mode on a per-block basis:

foo.zig

const builtin = @import("builtin");
const big = f64(1 << 40);

export fn foo_strict(x: f64) f64 {
    @setFloatMode(this, builtin.FloatMode.Strict);
    return x + big - big;
}

export fn foo_optimized(x: f64) f64 {
    return x + big - big;
}
$ zig build-obj foo.zig --release-fast

For this test we have to separate code into two object files - otherwise the optimizer figures out all the values at compile-time, which operates in strict mode.

float_mode.zig

const warn = @import("std").debug.warn;

extern fn foo_strict(x: f64) f64;
extern fn foo_optimized(x: f64) f64;

pub fn main() void {
    const x = 0.001;
    warn("optimized = {}\n", foo_optimized(x));
    warn("strict = {}\n", foo_strict(x));
}
$ zig build-exe float_mode.zig --object foo.o
$ ./float_mode
optimized = 1.0e-3
strict = 9.765625e-4

See also:

Operators

Table of Operators

Syntax Relevant Types Description Example
a + b
a += b
Addition.
2 + 5 == 7
a +% b
a +%= b
Wrapping Addition.
  • Guaranteed to have twos-complement wrapping behavior.
u32(@maxValue(u32)) +% 1 == 0
a - b
a -= b
Subtraction.
2 - 5 == -3
a -% b
a -%= b
Wrapping Subtraction.
  • Guaranteed to have twos-complement wrapping behavior.
u32(0) -% 1 == @maxValue(u32)
-a
Negation.
-1 == 0 - 1
-%a
Wrapping Negation.
  • Guaranteed to have twos-complement wrapping behavior.
-%i32(@minValue(i32)) == @minValue(i32)
a * b
a *= b
Multiplication.
2 * 5 == 10
a *% b
a *%= b
Wrapping Multiplication.
  • Guaranteed to have twos-complement wrapping behavior.
u8(200) *% 2 == 144
a / b
a /= b
Divison.
10 / 5 == 2
a % b
a %= b
Remainder Division.
10 % 3 == 1
a << b
a <<= b
Bit Shift Left.
1 << 8 == 256
a >> b
a >>= b
Bit Shift Right.
10 >> 1 == 5
a & b
a &= b
Bitwise AND.
0b011 & 0b101 == 0b001
a | b
a |= b
Bitwise OR.
0b010 | 0b100 == 0b110
a ^ b
a ^= b
Bitwise XOR.
0b011 ^ 0b101 == 0b110
~a
Bitwise NOT.
~u8(0b0101111) == 0b1010000
a ?? b
If a is null, returns b ("default value"), otherwise returns the unwrapped value of a. Note that b may be a value of type noreturn.
const value: ?u32 = null;
const unwrapped = value ?? 1234;
unwrapped == 1234
??a
Equivalent to:
a ?? unreachable
const value: ?u32 = 5678;
??value == 5678
a catch b
a catch |err| b
If a is an error, returns b ("default value"), otherwise returns the unwrapped value of a. Note that b may be a value of type noreturn. err is the error and is in scope of the expression b.
const value: error!u32 = error.Broken;
const unwrapped = value catch 1234;
unwrapped == 1234
a and b
If a is false, returns false without evaluating b. Otherwise, retuns b.
false and true == false
a or b
If a is true, returns true without evaluating b. Otherwise, retuns b.
false or true == true
!a
Boolean NOT.
!false == true
a == b
Returns true if a and b are equal, otherwise returns false.
(1 == 1) == true
a == null
Returns true if a is null, otherwise returns false.
const value: ?u32 = null;
value == null
a != b
Returns false if a and b are equal, otherwise returns true.
(1 != 1) == false
a > b
Returns true if a is greater than b, otherwise returns false.
(2 > 1) == true
a >= b
Returns true if a is greater than or equal to b, otherwise returns false.
(2 >= 1) == true
a < b
Returns true if a is less than b, otherwise returns false.
(1 < 2) == true
a <= b
Returns true if a is less than or equal to b, otherwise returns false.
(1 <= 2) == true
a ++ b
Array concatenation.
const mem = @import("std").mem;
const array1 = []u32{1,2};
const array2 = []u32{3,4};
const together = array1 ++ array2;
mem.eql(u32, together, []u32{1,2,3,4})
a ** b
Array multiplication.
const mem = @import("std").mem;
const pattern = "ab" ** 3;
mem.eql(u8, pattern, "ababab")
*a
Pointer dereference.
const x: u32 = 1234;
const ptr = &x;
*x == 1234
&a
All types Address of.
const x: u32 = 1234;
const ptr = &x;
*x == 1234

Precedence

x() x[] x.y
a!b
!x -x -%x ~x *x &x ?x ??x
x{}
! * / % ** *%
+ - ++ +% -%
<< >>
&
^
|
== != < > <= >=
and
or
?? catch
= *= /= %= += -= <<= >>= &= ^= |=

Arrays

arrays.zig

const assert = @import("std").debug.assert;
const mem = @import("std").mem;

// array literal
const message = []u8{'h', 'e', 'l', 'l', 'o'};

// get the size of an array
comptime {
    assert(message.len == 5);
}

// a string literal is an array literal
const same_message = "hello";

comptime {
    assert(mem.eql(u8, message, same_message));
    assert(@typeOf(message) == @typeOf(same_message));
}

test "iterate over an array" {
    var sum: usize = 0;
    for (message) |byte| {
        sum += byte;
    }
    assert(sum == usize('h') + usize('e') + usize('l') * 2 + usize('o'));
}

// modifiable array
var some_integers: [100]i32 = undefined;

test "modify an array" {
    for (some_integers) |*item, i| {
        *item = i32(i);
    }
    assert(some_integers[10] == 10);
    assert(some_integers[99] == 99);
}

// array concatenation works if the values are known
// at compile time
const part_one = []i32{1, 2, 3, 4};
const part_two = []i32{5, 6, 7, 8};
const all_of_it = part_one ++ part_two;
comptime {
    assert(mem.eql(i32, all_of_it, []i32{1,2,3,4,5,6,7,8}));
}

// remember that string literals are arrays
const hello = "hello";
const world = "world";
const hello_world = hello ++ " " ++ world;
comptime {
    assert(mem.eql(u8, hello_world, "hello world"));
}

// ** does repeating patterns
const pattern = "ab" ** 3;
comptime {
    assert(mem.eql(u8, pattern, "ababab"));
}

// initialize an array to zero
const all_zero = []u16{0} ** 10;

comptime {
    assert(all_zero.len == 10);
    assert(all_zero[5] == 0);
}

// use compile-time code to initialize an array
var fancy_array = init: {
    var initial_value: [10]Point = undefined;
    for (initial_value) |*pt, i| {
        *pt = Point {
            .x = i32(i),
            .y = i32(i) * 2,
        };
    }
    break :init initial_value;
};
const Point = struct {
    x: i32,
    y: i32,
};

test "compile-time array initalization" {
    assert(fancy_array[4].x == 4);
    assert(fancy_array[4].y == 8);
}

// call a function to initialize an array
var more_points = []Point{makePoint(3)} ** 10;
fn makePoint(x: i32) Point {
    return Point {
        .x = x,
        .y = x * 2,
    };
}
test "array initialization with function calls" {
    assert(more_points[4].x == 3);
    assert(more_points[4].y == 6);
    assert(more_points.len == 10);
}
$ zig test arrays.zig
Test 1/4 iterate over an array...OK
Test 2/4 modify an array...OK
Test 3/4 compile-time array initalization...OK
Test 4/4 array initialization with function calls...OK

See also:

Pointers

test.zig

const assert = @import("std").debug.assert;

test "address of syntax" {
    // Get the address of a variable:
    const x: i32 = 1234;
    const x_ptr = &x;

    // Deference a pointer:
    assert(*x_ptr == 1234);

    // When you get the address of a const variable, you get a const pointer.
    assert(@typeOf(x_ptr) == &const i32);

    // If you want to mutate the value, you'd need an address of a mutable variable:
    var y: i32 = 5678;
    const y_ptr = &y;
    assert(@typeOf(y_ptr) == &i32);
    *y_ptr += 1;
    assert(*y_ptr == 5679);
}

test "pointer array access" {
    // Pointers do not support pointer arithmetic. If you
    // need such a thing, use array index syntax:

    var array = []u8{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
    const ptr = &array[1];

    assert(array[2] == 3);
    ptr[1] += 1;
    assert(array[2] == 4);
}

test "pointer slicing" {
    // In Zig, we prefer using slices over null-terminated pointers.
    // You can turn a pointer into a slice using slice syntax:
    var array = []u8{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
    const ptr = &array[1];
    const slice = ptr[1..3];

    assert(slice.ptr == &ptr[1]);
    assert(slice.len == 2);

    // Slices have bounds checking and are therefore protected
    // against this kind of undefined behavior. This is one reason
    // we prefer slices to pointers.
    assert(array[3] == 4);
    slice[1] += 1;
    assert(array[3] == 5);
}

comptime {
    // Pointers work at compile-time too, as long as you don't use
    // @ptrCast.
    var x: i32 = 1;
    const ptr = &x;
    *ptr += 1;
    x += 1;
    assert(*ptr == 3);
}

test "@ptrToInt and @intToPtr" {
    // To convert an integer address into a pointer, use @intToPtr:
    const ptr = @intToPtr(&i32, 0xdeadbeef);

    // To convert a pointer to an integer, use @ptrToInt:
    const addr = @ptrToInt(ptr);

    assert(@typeOf(addr) == usize);
    assert(addr == 0xdeadbeef);
}

comptime {
    // Zig is able to do this at compile-time, as long as
    // ptr is never dereferenced.
    const ptr = @intToPtr(&i32, 0xdeadbeef);
    const addr = @ptrToInt(ptr);
    assert(@typeOf(addr) == usize);
    assert(addr == 0xdeadbeef);
}

test "volatile" {
    // In Zig, loads and stores are assumed to not have side effects.
    // If a given load or store should have side effects, such as
    // Memory Mapped Input/Output (MMIO), use `volatile`:
    const mmio_ptr = @intToPtr(&volatile u8, 0x12345678);

    // Now loads and stores with mmio_ptr are guaranteed to all happen
    // and in the same order as in source code.
    assert(@typeOf(mmio_ptr) == &volatile u8);
}

test "nullable pointers" {
    // Pointers cannot be null. If you want a null pointer, use the nullable
    // prefix `?` to make the pointer type nullable.
    var ptr: ?&i32 = null;

    var x: i32 = 1;
    ptr = &x;

    assert(*??ptr == 1);

    // Nullable pointers are the same size as normal pointers, because pointer
    // value 0 is used as the null value.
    assert(@sizeOf(?&i32) == @sizeOf(&i32));
}

test "pointer casting" {
    // To convert one pointer type to another, use @ptrCast. This is an unsafe
    // operation that Zig cannot protect you against. Use @ptrCast only when other
    // conversions are not possible.
    const bytes align(@alignOf(u32)) = []u8{0x12, 0x12, 0x12, 0x12};
    const u32_ptr = @ptrCast(&const u32, &bytes[0]);
    assert(*u32_ptr == 0x12121212);

    // Even this example is contrived - there are better ways to do the above than
    // pointer casting. For example, using a slice narrowing cast:
    const u32_value = ([]const u32)(bytes[0..])[0];
    assert(u32_value == 0x12121212);

    // And even another way, the most straightforward way to do it:
    assert(@bitCast(u32, bytes) == 0x12121212);
}

test "pointer child type" {
    // pointer types have a `child` field which tells you the type they point to.
    assert((&u32).Child == u32);
}
$ zig test test.zig
Test 1/8 address of syntax...OK
Test 2/8 pointer array access...OK
Test 3/8 pointer slicing...OK
Test 4/8 @ptrToInt and @intToPtr...OK
Test 5/8 volatile...OK
Test 6/8 nullable pointers...OK
Test 7/8 pointer casting...OK
Test 8/8 pointer child type...OK

Alignment

Each type has an alignment - a number of bytes such that, when a value of the type is loaded from or stored to memory, the memory address must be evenly divisible by this number. You can use @alignOf to find out this value for any type.

Alignment depends on the CPU architecture, but is always a power of two, and less than 1 << 29.

In Zig, a pointer type has an alignment value. If the value is equal to the alignment of the underlying type, it can be omitted from the type:

test.zig

const assert = @import("std").debug.assert;
const builtin = @import("builtin");

test "variable alignment" {
    var x: i32 = 1234;
    const align_of_i32 = @alignOf(@typeOf(x));
    assert(@typeOf(&x) == &i32);
    assert(&i32 == &align(align_of_i32) i32);
    if (builtin.arch == builtin.Arch.x86_64) {
        assert((&i32).alignment == 4);
    }
}
$ zig test test.zig
Test 1/1 variable alignment...OK

In the same way that a &i32 can be implicitly cast to a &const i32, a pointer with a larger alignment can be implicitly cast to a pointer with a smaller alignment, but not vice versa.

You can specify alignment on variables and functions. If you do this, then pointers to them get the specified alignment:

test.zig

const assert = @import("std").debug.assert;

var foo: u8 align(4) = 100;

test "global variable alignment" {
    assert(@typeOf(&foo).alignment == 4);
    assert(@typeOf(&foo) == &align(4) u8);
    const slice = (&foo)[0..1];
    assert(@typeOf(slice) == []align(4) u8);
}

fn derp() align(@sizeOf(usize) * 2) i32 { return 1234; }
fn noop1() align(1) void {}
fn noop4() align(4) void {}

test "function alignment" {
    assert(derp() == 1234);
    assert(@typeOf(noop1) == fn() align(1) void);
    assert(@typeOf(noop4) == fn() align(4) void);
    noop1();
    noop4();
}
$ zig test test.zig
Test 1/2 global variable alignment...OK
Test 2/2 function alignment...OK

If you have a pointer or a slice that has a small alignment, but you know that it actually has a bigger alignment, use @alignCast to change the pointer into a more aligned pointer. This is a no-op at runtime, but inserts a safety check:

test.zig

const assert = @import("std").debug.assert;

test "pointer alignment safety" {
    var array align(4) = []u32{0x11111111, 0x11111111};
    const bytes = ([]u8)(array[0..]);
    assert(foo(bytes) == 0x11111111);
}
fn foo(bytes: []u8) u32 {
    const slice4 = bytes[1..5];
    const int_slice = ([]u32)(@alignCast(4, slice4));
    return int_slice[0];
}
$ zig test test.zig
Test 1/1 pointer alignment safety...incorrect alignment
/home/andy/dev/zig/docgen_tmp/test.zig:10:45: 0x203973 in ??? (test)
    const int_slice = ([]u32)(@alignCast(4, slice4));
                                            ^
/home/andy/dev/zig/docgen_tmp/test.zig:6:15: 0x2036d6 in ??? (test)
    assert(foo(bytes) == 0x11111111);
              ^
/home/andy/dev/zig/build/lib/zig/std/special/test_runner.zig:11:25: 0x21d638 in ??? (test)
        try test_fn.func();
                        ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:85:22: 0x21d43b in ??? (test)
            root.main() catch |err| {
                     ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:62:20: 0x21d39b in ??? (test)
    return callMain();
                   ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:52:39: 0x21d22c in ??? (test)
    std.os.posix.exit(callMainWithArgs(argc, argv, envp));
                                      ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:39:5: 0x21d1b0 in ??? (test)
    @noInlineCall(posixCallMainAndExit);
    ^

Tests failed. Use the following command to reproduce the failure:
./zig-cache/test

Type Based Alias Analysis

Zig uses Type Based Alias Analysis (also known as Strict Aliasing) to perform some optimizations. This means that pointers of different types must not alias the same memory, with the exception of u8. Pointers to u8 can alias any memory.

As an example, this code produces undefined behavior:

*@ptrCast(&u32, f32(12.34))

Instead, use @bitCast:

@bitCast(u32, f32(12.34))

As an added benefit, the @bitcast version works at compile-time.

See also:

Slices

test.zig

const assert = @import("std").debug.assert;

test "basic slices" {
    var array = []i32{1, 2, 3, 4};
    // A slice is a pointer and a length. The difference between an array and
    // a slice is that the array's length is part of the type and known at
    // compile-time, whereas the slice's length is known at runtime.
    // Both can be accessed with the `len` field.
    const slice = array[0..array.len];
    assert(slice.ptr == &array[0]);
    assert(slice.len == array.len);

    // Slices have array bounds checking. If you try to access something out
    // of bounds, you'll get a safety check failure:
    slice[10] += 1;
}
$ zig test test.zig
Test 1/1 basic slices...index out of bounds
/home/andy/dev/zig/docgen_tmp/test.zig:15:10: 0x20372b in ??? (test)
    slice[10] += 1;
         ^
/home/andy/dev/zig/build/lib/zig/std/special/test_runner.zig:11:25: 0x21d568 in ??? (test)
        try test_fn.func();
                        ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:85:22: 0x21d36b in ??? (test)
            root.main() catch |err| {
                     ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:62:20: 0x21d2cb in ??? (test)
    return callMain();
                   ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:52:39: 0x21d15c in ??? (test)
    std.os.posix.exit(callMainWithArgs(argc, argv, envp));
                                      ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:39:5: 0x21d0e0 in ??? (test)
    @noInlineCall(posixCallMainAndExit);
    ^

Tests failed. Use the following command to reproduce the failure:
./zig-cache/test

This is one reason we prefer slices to pointers.

slices.zig

const assert = @import("std").debug.assert;
const mem = @import("std").mem;
const fmt = @import("std").fmt;

test "using slices for strings" {
    // Zig has no concept of strings. String literals are arrays of u8, and
    // in general the string type is []u8 (slice of u8).
    // Here we implicitly cast [5]u8 to []const u8
    const hello: []const u8 = "hello";
    const world: []const u8 = "世界";

    var all_together: [100]u8 = undefined;
    // You can use slice syntax on an array to convert an array into a slice.
    const all_together_slice = all_together[0..];
    // String concatenation example.
    const hello_world = try fmt.bufPrint(all_together_slice, "{} {}", hello, world);

    // Generally, you can use UTF-8 and not worry about whether something is a
    // string. If you don't need to deal with individual characters, no need
    // to decode.
    assert(mem.eql(u8, hello_world, "hello 世界"));
}

test "slice pointer" {
    var array: [10]u8 = undefined;
    const ptr = &array[0];

    // You can use slicing syntax to convert a pointer into a slice:
    const slice = ptr[0..5];
    slice[2] = 3;
    assert(slice[2] == 3);
    // The slice is mutable because we sliced a mutable pointer.
    assert(@typeOf(slice) == []u8);

    // You can also slice a slice:
    const slice2 = slice[2..3];
    assert(slice2.len == 1);
    assert(slice2[0] == 3);
}

test "slice widening" {
    // Zig supports slice widening and slice narrowing. Cast a slice of u8
    // to a slice of anything else, and Zig will perform the length conversion.
    const array align(@alignOf(u32)) = []u8{0x12, 0x12, 0x12, 0x12, 0x13, 0x13, 0x13, 0x13};
    const slice = ([]const u32)(array[0..]);
    assert(slice.len == 2);
    assert(slice[0] == 0x12121212);
    assert(slice[1] == 0x13131313);
}
$ zig test slices.zig
Test 1/3 using slices for strings...OK
Test 2/3 slice pointer...OK
Test 3/3 slice widening...OK

See also:

struct

structs.zig

// Declare a struct.
// Zig gives no guarantees about the order of fields and whether or
// not there will be padding.
const Point = struct {
    x: f32,
    y: f32,
};

// Maybe we want to pass it to OpenGL so we want to be particular about
// how the bytes are arranged.
const Point2 = packed struct {
    x: f32,
    y: f32,
};


// Declare an instance of a struct.
const p = Point {
    .x = 0.12,
    .y = 0.34,
};

// Maybe we're not ready to fill out some of the fields.
var p2 = Point {
    .x = 0.12,
    .y = undefined,
};

// Structs can have methods
// Struct methods are not special, they are only namespaced
// functions that you can call with dot syntax.
const Vec3 = struct {
    x: f32,
    y: f32,
    z: f32,

    pub fn init(x: f32, y: f32, z: f32) Vec3 {
        return Vec3 {
            .x = x,
            .y = y,
            .z = z,
        };
    }

    pub fn dot(self: &const Vec3, other: &const Vec3) f32 {
        return self.x * other.x + self.y * other.y + self.z * other.z;
    }
};

const assert = @import("std").debug.assert;
test "dot product" {
    const v1 = Vec3.init(1.0, 0.0, 0.0);
    const v2 = Vec3.init(0.0, 1.0, 0.0);
    assert(v1.dot(v2) == 0.0);

    // Other than being available to call with dot syntax, struct methods are
    // not special. You can reference them as any other declaration inside
    // the struct:
    assert(Vec3.dot(v1, v2) == 0.0);
}

// Structs can have global declarations.
// Structs can have 0 fields.
const Empty = struct {
    pub const PI = 3.14;
};
test "struct namespaced variable" {
    assert(Empty.PI == 3.14);
    assert(@sizeOf(Empty) == 0);

    // you can still instantiate an empty struct
    const does_nothing = Empty {};
}

// struct field order is determined by the compiler for optimal performance.
// however, you can still calculate a struct base pointer given a field pointer:
fn setYBasedOnX(x: &f32, y: f32) void {
    const point = @fieldParentPtr(Point, "x", x);
    point.y = y;
}
test "field parent pointer" {
    var point = Point {
        .x = 0.1234,
        .y = 0.5678,
    };
    setYBasedOnX(&point.x, 0.9);
    assert(point.y == 0.9);
}

// You can return a struct from a function. This is how we do generics
// in Zig:
fn LinkedList(comptime T: type) type {
    return struct {
        pub const Node = struct {
            prev: ?&Node,
            next: ?&Node,
            data: T,
        };

        first: ?&Node,
        last:  ?&Node,
        len:   usize,
    };
}

test "linked list" {
    // Functions called at compile-time are memoized. This means you can
    // do this:
    assert(LinkedList(i32) == LinkedList(i32));

    var list = LinkedList(i32) {
        .first = null,
        .last = null,
        .len = 0,
    };
    assert(list.len == 0);

    // Since types are first class values you can instantiate the type
    // by assigning it to a variable:
    const ListOfInts = LinkedList(i32);
    assert(ListOfInts == LinkedList(i32));

    var node = ListOfInts.Node {
        .prev = null,
        .next = null,
        .data = 1234,
    };
    var list2 = LinkedList(i32) {
        .first = &node,
        .last = &node,
        .len = 1,
    };
    assert((??list2.first).data == 1234);
}
$ zig test structs.zig
Test 1/4 dot product...OK
Test 2/4 struct namespaced variable...OK
Test 3/4 field parent pointer...OK
Test 4/4 linked list...OK

See also:

enum

enums.zig

const assert = @import("std").debug.assert;
const mem = @import("std").mem;

// Declare an enum.
const Type = enum {
    Ok,
    NotOk,
};

// Declare a specific instance of the enum variant.
const c = Type.Ok;

// If you want access to the ordinal value of an enum, you
// can specify the tag type.
const Value = enum(u2) {
    Zero,
    One,
    Two,
};

// Now you can cast between u2 and Value.
// The ordinal value starts from 0, counting up for each member.
test "enum ordinal value" {
    assert(u2(Value.Zero) == 0);
    assert(u2(Value.One) == 1);
    assert(u2(Value.Two) == 2);
}

// You can override the ordinal value for an enum.
const Value2 = enum(u32) {
    Hundred = 100,
    Thousand = 1000,
    Million = 1000000,
};
test "set enum ordinal value" {
    assert(u32(Value2.Hundred) == 100);
    assert(u32(Value2.Thousand) == 1000);
    assert(u32(Value2.Million) == 1000000);
}

// Enums can have methods, the same as structs and unions.
// Enum methods are not special, they are only namespaced
// functions that you can call with dot syntax.
const Suit = enum {
    Clubs,
    Spades,
    Diamonds,
    Hearts,

    pub fn isClubs(self: Suit) bool {
        return self == Suit.Clubs;
    }
};
test "enum method" {
    const p = Suit.Spades;
    assert(!p.isClubs());
}

// An enum variant of different types can be switched upon.
const Foo = enum {
    String,
    Number,
    None,
};
test "enum variant switch" {
    const p = Foo.Number;
    const what_is_it = switch (p) {
        Foo.String => "this is a string",
        Foo.Number => "this is a number",
        Foo.None => "this is a none",
    };
    assert(mem.eql(u8, what_is_it, "this is a number"));
}

// @TagType can be used to access the integer tag type of an enum.
const Small = enum {
    One,
    Two,
    Three,
    Four,
};
test "@TagType" {
    assert(@TagType(Small) == u2);
}

// @memberCount tells how many fields an enum has:
test "@memberCount" {
    assert(@memberCount(Small) == 4);
}

// @memberName tells the name of a field in an enum:
test "@memberName" {
    assert(mem.eql(u8, @memberName(Small, 1), "Two"));
}

// @tagName gives a []const u8 representation of an enum value:
test "@tagName" {
    assert(mem.eql(u8, @tagName(Small.Three), "Three"));
}
$ zig test enums.zig
Test 1/8 enum ordinal value...OK
Test 2/8 set enum ordinal value...OK
Test 3/8 enum method...OK
Test 4/8 enum variant switch...OK
Test 5/8 @TagType...OK
Test 6/8 @memberCount...OK
Test 7/8 @memberName...OK
Test 8/8 @tagName...OK

extern enum

By default, enums are not guaranteed to be compatible with the C ABI:

test.zig

const Foo = enum { A, B, C };
export fn entry(foo: Foo) void { }
$ zig build-obj test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:2:22: error: parameter of type 'Foo' not allowed in function with calling convention 'ccc'
export fn entry(foo: Foo) void { 
                     ^

For a C-ABI-compatible enum, use extern enum:

test.zig

const Foo = extern enum { A, B, C };
export fn entry(foo: Foo) void { }
$ zig build-obj test.zig

TODO packed enum

See also:

union

union.zig

const assert = @import("std").debug.assert;
const mem = @import("std").mem;

// A union has only 1 active field at a time.
const Payload = union {
    Int: i64,
    Float: f64,
    Bool: bool,
};
test "simple union" {
    var payload = Payload {.Int = 1234};
    // payload.Float = 12.34; // ERROR! field not active
    assert(payload.Int == 1234);
    // You can activate another field by assigning the entire union.
    payload = Payload {.Float = 12.34};
    assert(payload.Float == 12.34);
}

// Unions can be given an enum tag type:
const ComplexTypeTag = enum { Ok, NotOk }; 
const ComplexType = union(ComplexTypeTag) {
    Ok: u8,
    NotOk: void,
};

// Declare a specific instance of the union variant.
test "declare union value" {
    const c = ComplexType { .Ok = 0 };
    assert(ComplexTypeTag(c) == ComplexTypeTag.Ok);
}

// @TagType can be used to access the enum tag type of a union.
test "@TagType" {
    assert(@TagType(ComplexType) == ComplexTypeTag);
}

// Unions can be made to infer the enum tag type.
const Foo = union(enum) {
    String: []const u8,
    Number: u64,

    // void can be omitted when inferring enum tag type.
    None,
};
test "union variant switch" {
    const p = Foo { .Number = 54 };
    const what_is_it = switch (p) {
        // Capture by reference
        Foo.String => |*x| blk: {
            break :blk "this is a string";
        },

        // Capture by value
        Foo.Number => |x| blk: {
            assert(x == 54);
            break :blk "this is a number";
        },

        Foo.None => blk: {
            break :blk "this is a none";
        },
    };
    assert(mem.eql(u8, what_is_it, "this is a number"));
}

// TODO union methods


const Small = union {
    A: i32,
    B: bool,
    C: u8,
};

// @memberCount tells how many fields a union has:
test "@memberCount" {
    assert(@memberCount(Small) == 3);
}

// @memberName tells the name of a field in an enum:
test "@memberName" {
    assert(mem.eql(u8, @memberName(Small, 1), "B"));
}

// @tagName gives a []const u8 representation of an enum value,
// but only if the union has an enum tag type.
const Small2 = union(enum) {
    A: i32,
    B: bool,
    C: u8,
};
test "@tagName" {
    assert(mem.eql(u8, @tagName(Small2.C), "C"));
}
$ zig test union.zig
Test 1/7 simple union...OK
Test 2/7 declare union value...OK
Test 3/7 @TagType...OK
Test 4/7 union variant switch...OK
Test 5/7 @memberCount...OK
Test 6/7 @memberName...OK
Test 7/7 @tagName...OK

Unions with an enum tag are generated as a struct with a tag field and union field. Zig sorts the order of the tag and union field by the largest alignment.

switch

switch.zig

const assert = @import("std").debug.assert;
const builtin = @import("builtin");

test "switch simple" {
    const a: u64 = 10;
    const zz: u64 = 103;

    // All branches of a switch expression must be able to be coerced to a
    // common type.
    //
    // Branches cannot fallthrough. If fallthrough behavior is desired, combine
    // the cases and use an if.
    const b = switch (a) {
        // Multiple cases can be combined via a ','
        1, 2, 3 => 0,

        // Ranges can be specified using the ... syntax. These are inclusive
        // both ends.
        5 ... 100 => 1,

        // Branches can be arbitrarily complex.
        101 => blk: {
            const c: u64 = 5;
            break :blk c * 2 + 1;
        },

        // Switching on arbitrary expressions is allowed as long as the
        // expression is known at compile-time.
        zz => zz,
        comptime blk: {
            const d: u32 = 5;
            const e: u32 = 100;
            break :blk d + e;
        } => 107,

        // The else branch catches everything not already captured.
        // Else branches are mandatory unless the entire range of values
        // is handled.
        else => 9,
    };

    assert(b == 1);
}

test "switch enum" {
    const Item = union(enum) {
        A: u32,
        C: struct { x: u8, y: u8 },
        D,
    };

    var a = Item { .A = 3 };

    // Switching on more complex enums is allowed.
    const b = switch (a) {
        // A capture group is allowed on a match, and will return the enum
        // value matched.
        Item.A => |item| item,

        // A reference to the matched value can be obtained using `*` syntax.
        Item.C => |*item| blk: {
            (*item).x += 1;
            break :blk 6;
        },

        // No else is required if the types cases was exhaustively handled
        Item.D => 8,
    };

    assert(b == 3);
}

// Switch expressions can be used outside a function:
const os_msg = switch (builtin.os) {
    builtin.Os.linux => "we found a linux user",
    else => "not a linux user",
};

// Inside a function, switch statements implicitly are compile-time
// evaluated if the target expression is compile-time known.
test "switch inside function" {
    switch (builtin.os) {
        builtin.Os.fuchsia => {
            // On an OS other than fuchsia, block is not even analyzed,
            // so this compile error is not triggered.
            // On fuchsia this compile error would be triggered.
            @compileError("windows not supported");
        },
        else => {},
    }
}
$ zig test switch.zig
Test 1/3 switch simple...OK
Test 2/3 switch enum...OK
Test 3/3 switch inside function...OK

See also:

while

while.zig

const assert = @import("std").debug.assert;

test "while basic" {
    // A while loop is used to repeatedly execute an expression until
    // some condition is no longer true.
    var i: usize = 0;
    while (i < 10) {
        i += 1;
    }
    assert(i == 10);
}

test "while break" {
    // You can use break to exit a while loop early.
    var i: usize = 0;
    while (true) {
        if (i == 10)
            break;
        i += 1;
    }
    assert(i == 10);
}

test "while continue" {
    // You can use continue to jump back to the beginning of the loop.
    var i: usize = 0;
    while (true) {
        i += 1;
        if (i < 10)
            continue;
        break;
    }
    assert(i == 10);
}

test "while loop continuation expression" {
    // You can give an expression to the while loop to execute when
    // the loop is continued. This is respected by the continue control flow.
    var i: usize = 0;
    while (i < 10) : (i += 1) {}
    assert(i == 10);
}

test "while loop continuation expression, more complicated" {
    // More complex blocks can be used as an expression in the loop continue
    // expression.
    var i1: usize = 1;
    var j1: usize = 1;
    while (i1 * j1 < 2000) : ({ i1 *= 2; j1 *= 3; }) {
        const my_ij1 = i1 * j1;
        assert(my_ij1 < 2000);
    }
}

test "while else" {
    assert(rangeHasNumber(0, 10, 5));
    assert(!rangeHasNumber(0, 10, 15));
}

fn rangeHasNumber(begin: usize, end: usize, number: usize) bool {
    var i = begin;
    // While loops are expressions. The result of the expression is the
    // result of the else clause of a while loop, which is executed when
    // the condition of the while loop is tested as false.
    return while (i < end) : (i += 1) {
        if (i == number) {
            // break expressions, like return expressions, accept a value
            // parameter. This is the result of the while expression.
            // When you break from a while loop, the else branch is not
            // evaluated.
            break true;
        }
    } else false;
}

test "while null capture" {
    // Just like if expressions, while loops can take a nullable as the
    // condition and capture the payload. When null is encountered the loop
    // exits.
    var sum1: u32 = 0;
    numbers_left = 3;
    while (eventuallyNullSequence()) |value| {
        sum1 += value;
    }
    assert(sum1 == 3);

    // The else branch is allowed on nullable iteration. In this case, it will
    // be executed on the first null value encountered.
    var sum2: u32 = 0;
    numbers_left = 3;
    while (eventuallyNullSequence()) |value| {
        sum2 += value;
    } else {
        assert(sum1 == 3);
    }

    // Just like if expressions, while loops can also take an error union as
    // the condition and capture the payload or the error code. When the
    // condition results in an error code the else branch is evaluated and
    // the loop is finished.
    var sum3: u32 = 0;
    numbers_left = 3;
    while (eventuallyErrorSequence()) |value| {
        sum3 += value;
    } else |err| {
        assert(err == error.ReachedZero);
    }
}

var numbers_left: u32 = undefined;
fn eventuallyNullSequence() ?u32 {
    return if (numbers_left == 0) null else blk: {
        numbers_left -= 1;
        break :blk numbers_left;
    };
}

fn eventuallyErrorSequence() error!u32 {
    return if (numbers_left == 0) error.ReachedZero else blk: {
        numbers_left -= 1;
        break :blk numbers_left;
    };
}

test "inline while loop" {
    // While loops can be inlined. This causes the loop to be unrolled, which
    // allows the code to do some things which only work at compile time,
    // such as use types as first class values.
    comptime var i = 0;
    var sum: usize = 0;
    inline while (i < 3) : (i += 1) {
        const T = switch (i) {
            0 => f32,
            1 => i8,
            2 => bool,
            else => unreachable,
        };
        sum += typeNameLength(T);
    }
    assert(sum == 9);
}

fn typeNameLength(comptime T: type) usize {
    return @typeName(T).len;
}
$ zig test while.zig
Test 1/8 while basic...OK
Test 2/8 while break...OK
Test 3/8 while continue...OK
Test 4/8 while loop continuation expression...OK
Test 5/8 while loop continuation expression, more complicated...OK
Test 6/8 while else...OK
Test 7/8 while null capture...OK
Test 8/8 inline while loop...OK

See also:

for

for.zig

const assert = @import("std").debug.assert;

test "for basics" {
    const items = []i32 { 4, 5, 3, 4, 0 };
    var sum: i32 = 0;

    // For loops iterate over slices and arrays.
    for (items) |value| {
        // Break and continue are supported.
        if (value == 0) {
            continue;
        }
        sum += value;
    }
    assert(sum == 16);

    // To iterate over a portion of a slice, reslice.
    for (items[0..1]) |value| {
        sum += value;
    }
    assert(sum == 20);

    // To access the index of iteration, specify a second capture value.
    // This is zero-indexed.
    var sum2: i32 = 0;
    for (items) |value, i| {
        assert(@typeOf(i) == usize);
        sum2 += i32(i);
    }
    assert(sum2 == 10);
}

test "for reference" {
    var items = []i32 { 3, 4, 2 };

    // Iterate over the slice by reference by
    // specifying that the capture value is a pointer.
    for (items) |*value| {
        *value += 1;
    }

    assert(items[0] == 4);
    assert(items[1] == 5);
    assert(items[2] == 3);
}

test "for else" {
    // For allows an else attached to it, the same as a while loop.
    var items = []?i32 { 3, 4, null, 5 };

    // For loops can also be used as expressions.
    var sum: i32 = 0;
    const result = for (items) |value| {
        if (value == null) {
            break 9;
        } else {
            sum += ??value;
        }
    } else blk: {
        assert(sum == 7);
        break :blk sum;
    };
}


test "inline for loop" {
    const nums = []i32{2, 4, 6};
    // For loops can be inlined. This causes the loop to be unrolled, which
    // allows the code to do some things which only work at compile time,
    // such as use types as first class values.
    // The capture value and iterator value of inlined for loops are
    // compile-time known.
    var sum: usize = 0;
    inline for (nums) |i| {
        const T = switch (i) {
            2 => f32,
            4 => i8,
            6 => bool,
            else => unreachable,
        };
        sum += typeNameLength(T);
    }
    assert(sum == 9);
}

fn typeNameLength(comptime T: type) usize {
    return @typeName(T).len;
}
$ zig test for.zig
Test 1/4 for basics...OK
Test 2/4 for reference...OK
Test 3/4 for else...OK
Test 4/4 inline for loop...OK

See also:

if

if.zig

// If expressions have three uses, corresponding to the three types:
// * bool
// * ?T
// * error!T

const assert = @import("std").debug.assert;

test "if boolean" {
    // If expressions test boolean conditions.
    const a: u32 = 5;
    const b: u32 = 4;
    if (a != b) {
        assert(true);
    } else if (a == 9) {
        unreachable;
    } else {
        unreachable;
    }

    // If expressions are used instead of a ternary expression.
    const result = if (a != b) 47 else 3089;
    assert(result == 47);
}

test "if nullable" {
    // If expressions test for null.

    const a: ?u32 = 0;
    if (a) |value| {
        assert(value == 0);
    } else {
        unreachable;
    }

    const b: ?u32 = null;
    if (b) |value| {
        unreachable;
    } else {
        assert(true);
    }

    // The else is not required.
    if (a) |value| {
        assert(value == 0);
    }

    // To test against null only, use the binary equality operator.
    if (b == null) {
        assert(true);
    }

    // Access the value by reference using a pointer capture.
    var c: ?u32 = 3;
    if (c) |*value| {
        *value = 2;
    }

    if (c) |value| {
        assert(value == 2);
    } else {
        unreachable;
    }
}

test "if error union" {
    // If expressions test for errors.
    // Note the |err| capture on the else.

    const a: error!u32 = 0;
    if (a) |value| {
        assert(value == 0);
    } else |err| {
        unreachable;
    }

    const b: error!u32 = error.BadValue;
    if (b) |value| {
        unreachable;
    } else |err| {
        assert(err == error.BadValue);
    }

    // The else and |err| capture is strictly required.
    if (a) |value| {
        assert(value == 0);
    } else |_| {}

    // To check only the error value, use an empty block expression.
    if (b) |_| {} else |err| {
        assert(err == error.BadValue);
    }

    // Access the value by reference using a pointer capture.
    var c: error!u32 = 3;
    if (c) |*value| {
        *value = 9;
    } else |err| {
        unreachable;
    }

    if (c) |value| {
        assert(value == 9);
    } else |err| {
        unreachable;
    }
}
$ zig test if.zig
Test 1/3 if boolean...OK
Test 2/3 if nullable...OK
Test 3/3 if error union...OK

See also:

defer

defer.zig

const std = @import("std");
const assert = std.debug.assert;
const warn = std.debug.warn;

// defer will execute an expression at the end of the current scope.
fn deferExample() usize {
    var a: usize = 1;

    {
        defer a = 2;
        a = 1;
    }
    assert(a == 2);

    a = 5;
    return a;
}

test "defer basics" {
    assert(deferExample() == 5);
}

// If multiple defer statements are specified, they will be executed in
// the reverse order they were run.
fn deferUnwindExample() void {
    warn("\n");

    defer {
        warn("1 ");
    }
    defer {
        warn("2 ");
    }
    if (false) {
        // defers are not run if they are never executed.
        defer {
            warn("3 ");
        }
    }
}

test "defer unwinding" {
    deferUnwindExample();
}

// The errdefer keyword is similar to defer, but will only execute if the
// scope returns with an error.
//
// This is especially useful in allowing a function to clean up properly
// on error, and replaces goto error handling tactics as seen in c.
fn deferErrorExample(is_error: bool) !void {
    warn("\nstart of function\n");

    // This will always be executed on exit
    defer {
        warn("end of function\n");
    }

    errdefer {
        warn("encountered an error!\n");
    }

    if (is_error) {
        return error.DeferError;
    }
}

test "errdefer unwinding" {
    _ = deferErrorExample(false);
    _ = deferErrorExample(true);
}
$ zig test defer.zig
Test 1/3 defer basics...OK
Test 2/3 defer unwinding...
2 1 OK
Test 3/3 errdefer unwinding...
start of function
end of function

start of function
encountered an error!
end of function
OK

See also:

unreachable

In Debug and ReleaseSafe mode, and when using zig test, unreachable emits a call to panic with the message reached unreachable code.

In ReleaseFast mode, the optimizer uses the assumption that unreachable code will never be hit to perform optimizations. However, zig test even in ReleaseFast mode still emits unreachable as calls to panic.

Basics

test.zig

// unreachable is used to assert that control flow will never happen upon a
// particular location:
test "basic math" {
    const x = 1;
    const y = 2;
    if (x + y != 3) {
        unreachable;
    }
}
$ zig test test.zig
Test 1/1 basic math...OK

In fact, this is how assert is implemented:

test.zig

fn assert(ok: bool) void {
    if (!ok) unreachable; // assertion failure
}

// This test will fail because we hit unreachable.
test "this will fail" {
    assert(false);
}
$ zig test test.zig
Test 1/1 this will fail...reached unreachable code
/home/andy/dev/zig/docgen_tmp/test.zig:2:14: 0x203839 in ??? (test)
    if (!ok) unreachable; // assertion failure
             ^
/home/andy/dev/zig/docgen_tmp/test.zig:7:11: 0x20365b in ??? (test)
    assert(false);
          ^
/home/andy/dev/zig/build/lib/zig/std/special/test_runner.zig:11:25: 0x21d488 in ??? (test)
        try test_fn.func();
                        ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:85:22: 0x21d28b in ??? (test)
            root.main() catch |err| {
                     ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:62:20: 0x21d1eb in ??? (test)
    return callMain();
                   ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:52:39: 0x21d07c in ??? (test)
    std.os.posix.exit(callMainWithArgs(argc, argv, envp));
                                      ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:39:5: 0x21d000 in ??? (test)
    @noInlineCall(posixCallMainAndExit);
    ^

Tests failed. Use the following command to reproduce the failure:
./zig-cache/test

At Compile-Time

test.zig

const assert = @import("std").debug.assert;

test "type of unreachable" {
    comptime {
        // The type of unreachable is noreturn.

        // However this assertion will still fail because
        // evaluating unreachable at compile-time is a compile error.

        assert(@typeOf(unreachable) == noreturn);
    }
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:10:16: error: unreachable code
        assert(@typeOf(unreachable) == noreturn);
               ^

See also:

noreturn

noreturn is the type of:

When resolving types together, such as if clauses or switch prongs, the noreturn type is compatible with every other type. Consider:

test.zig

fn foo(condition: bool, b: u32) void {
    const a = if (condition) b else return;
    @panic("do something with a");
}
test "noreturn" {
    foo(false, 1);
}
$ zig test test.zig
Test 1/1 noreturn...OK

Another use case for noreturn is the exit function:

test.zig

pub extern "kernel32" stdcallcc fn ExitProcess(exit_code: c_uint) noreturn;

test "foo" {
    const value = bar() catch ExitProcess(1);
    assert(value == 1234);
}

fn bar() error!u32 {
    return 1234;
}

const assert = @import("std").debug.assert;
$ zig test test.zig
Created ./zig-cache/test.exe but skipping execution because it is non-native.

Functions

functions.zig

const assert = @import("std").debug.assert;

// Functions are declared like this
fn add(a: i8, b: i8) i8 {
    if (a == 0) {
        // You can still return manually if needed.
        return b;
    }

    return a + b;
}

// The export specifier makes a function externally visible in the generated
// object file, and makes it use the C ABI.
export fn sub(a: i8, b: i8) i8 { return a - b; }

// The extern specifier is used to declare a function that will be resolved
// at link time, when linking statically, or at runtime, when linking
// dynamically.
// The stdcallcc specifier changes the calling convention of the function.
extern "kernel32" stdcallcc fn ExitProcess(exit_code: u32) noreturn;
extern "c" fn atan2(a: f64, b: f64) f64;

// The @setCold builtin tells the optimizer that a function is rarely called.
fn abort() noreturn {
    @setCold(true);
    while (true) {}
}

// nakedcc makes a function not have any function prologue or epilogue.
// This can be useful when integrating with assembly.
nakedcc fn _start() noreturn {
    abort();
}

// The pub specifier allows the function to be visible when importing.
// Another file can use @import and call sub2
pub fn sub2(a: i8, b: i8) i8 { return a - b; }

// Functions can be used as values and are equivalent to pointers.
const call2_op = fn (a: i8, b: i8) i8;
fn do_op(fn_call: call2_op, op1: i8, op2: i8) i8 {
    return fn_call(op1, op2);
}

test "function" {
    assert(do_op(add, 5, 6) == 11);
    assert(do_op(sub2, 5, 6) == -1);
}
$ zig test functions.zig
Test 1/1 function...OK

Function values are like pointers:

test.zig

const assert = @import("std").debug.assert;

comptime {
    assert(@typeOf(foo) == fn()void);
    assert(@sizeOf(fn()void) == @sizeOf(?fn()void));
}

fn foo() void { }
$ zig build-obj test.zig

Pass-by-value Parameters

In Zig, structs, unions, and enums with payloads cannot be passed by value to a function.

test.zig

const Foo = struct {
    x: i32,
};

fn bar(foo: Foo) void {}

test "pass aggregate type by value to function" {
    bar(Foo {.x = 12,});
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:5:13: error: type 'Foo' is not copyable; cannot pass by value
fn bar(foo: Foo) void {}
            ^

Instead, one must use &const. Zig allows implicitly casting something to a const pointer to it:

test.zig

const Foo = struct {
    x: i32,
};

fn bar(foo: &const Foo) void {}

test "implicitly cast to const pointer" {
    bar(Foo {.x = 12,});
}
$ zig test test.zig
Test 1/1 implicitly cast to const pointer...OK

However, the C ABI does allow passing structs and unions by value. So functions which use the C calling convention may pass structs and unions by value.

Function Reflection

test.zig

const assert = @import("std").debug.assert;

test "fn reflection" {
    assert(@typeOf(assert).ReturnType == void);
    assert(@typeOf(assert).is_var_args == false);
}
$ zig test test.zig
Test 1/1 fn reflection...OK

Errors

Error Set Type

An error set is like an enum. However, each error name across the entire compilation gets assigned an unsigned integer greater than 0. You are allowed to declare the same error name more than once, and if you do, it gets assigned the same integer value.

The number of unique error values across the entire compilation should determine the size of the error set type. However right now it is hard coded to be a u16. See #768.

You can implicitly cast an error from a subset to its superset:

test.zig

const std = @import("std");

const FileOpenError = error {
    AccessDenied,
    OutOfMemory,
    FileNotFound,
};

const AllocationError = error {
    OutOfMemory,
};

test "implicit cast subset to superset" {
    const err = foo(AllocationError.OutOfMemory);
    std.debug.assert(err == FileOpenError.OutOfMemory);
}

fn foo(err: AllocationError) FileOpenError {
    return err;
}
$ zig test test.zig
Test 1/1 implicit cast subset to superset...OK

But you cannot implicitly cast an error from a superset to a subset:

test.zig

const FileOpenError = error {
    AccessDenied,
    OutOfMemory,
    FileNotFound,
};

const AllocationError = error {
    OutOfMemory,
};

test "implicit cast superset to subset" {
    foo(FileOpenError.OutOfMemory) catch {};
}

fn foo(err: FileOpenError) AllocationError {
    return err;
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:16:12: error: expected 'AllocationError', found 'FileOpenError'
    return err;
           ^
/home/andy/dev/zig/docgen_tmp/test.zig:2:5: note: 'error.AccessDenied' not a member of destination error set
    AccessDenied,
    ^
/home/andy/dev/zig/docgen_tmp/test.zig:4:5: note: 'error.FileNotFound' not a member of destination error set
    FileNotFound,
    ^

There is a shortcut for declaring an error set with only 1 value, and then getting that value:

const err = error.FileNotFound;

This is equivalent to:

const err = (error {FileNotFound}).FileNotFound;

This becomes useful when using Inferred Error Sets.

The Global Error Set

error refers to the global error set. This is the error set that contains all errors in the entire compilation unit. It is a superset of all other error sets and a subset of none of them.

You can implicitly cast any error set to the global one, and you can explicitly cast an error of global error set to a non-global one. This inserts a language-level assert to make sure the error value is in fact in the destination error set.

The global error set should generally be avoided when possible, because it prevents the compiler from knowing what errors are possible at compile-time. Knowing the error set at compile-time is better for generated documentationt and for helpful error messages such as forgetting a possible error value in a switch.

Error Union Type

Most of the time you will not find yourself using an error set type. Instead, likely you will be using the error union type. This is when you take an error set and a normal type, and create an error union with the ! binary operator.

Here is a function to parse a string into a 64-bit integer:

test.zig

pub fn parseU64(buf: []const u8, radix: u8) !u64 {
    var x: u64 = 0;

    for (buf) |c| {
        const digit = charToDigit(c);

        if (digit >= radix) {
            return error.InvalidChar;
        }

        // x *= radix
        if (@mulWithOverflow(u64, x, radix, &x)) {
            return error.Overflow;
        }

        // x += digit
        if (@addWithOverflow(u64, x, digit, &x)) {
            return error.Overflow;
        }
    }

    return x;
}

fn charToDigit(c: u8) u8 {
    return switch (c) {
        '0' ... '9' => c - '0',
        'A' ... 'Z' => c - 'A' + 10,
        'a' ... 'z' => c - 'a' + 10,
        else => @maxValue(u8),
    };
}

test "parse u64" {
    const result = try parseU64("1234", 10);
    @import("std").debug.assert(result == 1234);
}
$ zig test test.zig
Test 1/1 parse u64...OK

Notice the return type is !u64. This means that the function either returns an unsigned 64 bit integer, or an error. We left off the error set to the left of the !, so the error set is inferred.

Within the function definition, you can see some return statements that return an error, and at the bottom a return statement that returns a u64. Both types implicitly cast to error!u64.

What it looks like to use this function varies depending on what you're trying to do. One of the following:

If you want to provide a default value, you can use the catch binary operator:

fn doAThing(str: []u8) void {
    const number = parseU64(str, 10) catch 13;
    // ...
}

In this code, number will be equal to the successfully parsed string, or a default value of 13. The type of the right hand side of the binary catch operator must match the unwrapped error union type, or be of type noreturn.

Let's say you wanted to return the error if you got one, otherwise continue with the function logic:

fn doAThing(str: []u8) !void {
    const number = parseU64(str, 10) catch |err| return err;
    // ...
}

There is a shortcut for this. The try expression:

fn doAThing(str: []u8) !void {
    const number = try parseU64(str, 10);
    // ...
}

try evaluates an error union expression. If it is an error, it returns from the current function with the same error. Otherwise, the expression results in the unwrapped value.

Maybe you know with complete certainty that an expression will never be an error. In this case you can do this:

const number = parseU64("1234", 10) catch unreachable;

Here we know for sure that "1234" will parse successfully. So we put the unreachable value on the right hand side. unreachable generates a panic in Debug and ReleaseSafe modes and undefined behavior in ReleaseFast mode. So, while we're debugging the application, if there was a surprise error here, the application would crash appropriately.

Finally, you may want to take a different action for every situation. For that, we combine the if and switch expression:

fn doAThing(str: []u8) void {
    if (parseU64(str, 10)) |number| {
        doSomethingWithNumber(number);
    } else |err| switch (err) {
        error.Overflow => {
            // handle overflow...
        },
        // we promise that InvalidChar won't happen (or crash in debug mode if it does)
        error.InvalidChar => unreachable,
    }
}

The other component to error handling is defer statements. In addition to an unconditional defer, Zig has errdefer, which evaluates the deferred expression on block exit path if and only if the function returned with an error from the block.

Example:

fn createFoo(param: i32) !Foo {
    const foo = try tryToAllocateFoo();
    // now we have allocated foo. we need to free it if the function fails.
    // but we want to return it if the function succeeds.
    errdefer deallocateFoo(foo);

    const tmp_buf = allocateTmpBuffer() ?? return error.OutOfMemory;
    // tmp_buf is truly a temporary resource, and we for sure want to clean it up
    // before this block leaves scope
    defer deallocateTmpBuffer(tmp_buf);

    if (param > 1337) return error.InvalidParam;

    // here the errdefer will not run since we're returning success from the function.
    // but the defer will run!
    return foo;
}

The neat thing about this is that you get robust error handling without the verbosity and cognitive overhead of trying to make sure every exit path is covered. The deallocation code is always directly following the allocation code.

A couple of other tidbits about error handling:

See also:

An error union is created with the ! binary operator. You can use compile-time reflection to access the child type of an error union:

test.zig

const assert = @import("std").debug.assert;

test "error union" {
    var foo: error!i32 = undefined;

    // Implicitly cast from child type of an error union:
    foo = 1234;

    // Implicitly cast from an error set:
    foo = error.SomeError;

    // Use compile-time reflection to access the payload type of an error union:
    comptime assert(@typeOf(foo).Payload == i32);

    // Use compile-time reflection to access the error set type of an error union:
    comptime assert(@typeOf(foo).ErrorSet == error);
}
$ zig test test.zig
Test 1/1 error union...OK

TODO the || operator for error sets

Inferred Error Sets

TODO

Error Return Traces

TODO

Nullables

One area that Zig provides safety without compromising efficiency or readability is with the nullable type.

The question mark symbolizes the nullable type. You can convert a type to a nullable type by putting a question mark in front of it, like this:

// normal integer
const normal_int: i32 = 1234;

// nullable integer
const nullable_int: ?i32 = 5678;

Now the variable nullable_int could be an i32, or null.

Instead of integers, let's talk about pointers. Null references are the source of many runtime exceptions, and even stand accused of being the worst mistake of computer science.

Zig does not have them.

Instead, you can use a nullable pointer. This secretly compiles down to a normal pointer, since we know we can use 0 as the null value for the nullable type. But the compiler can check your work and make sure you don't assign null to something that can't be null.

Typically the downside of not having null is that it makes the code more verbose to write. But, let's compare some equivalent C code and Zig code.

Task: call malloc, if the result is null, return null.

C code

// malloc prototype included for reference
void *malloc(size_t size);

struct Foo *do_a_thing(void) {
    char *ptr = malloc(1234);
    if (!ptr) return NULL;
    // ...
}

Zig code

// malloc prototype included for reference
extern fn malloc(size: size_t) ?&u8;

fn doAThing() ?&Foo {
    const ptr = malloc(1234) ?? return null;
    // ...
}

Here, Zig is at least as convenient, if not more, than C. And, the type of "ptr" is &u8 not ?&u8. The ?? operator unwrapped the nullable type and therefore ptr is guaranteed to be non-null everywhere it is used in the function.

The other form of checking against NULL you might see looks like this:

void do_a_thing(struct Foo *foo) {
    // do some stuff

    if (foo) {
        do_something_with_foo(foo);
    }

    // do some stuff
}

In Zig you can accomplish the same thing:

fn doAThing(nullable_foo: ?&Foo) void {
    // do some stuff

    if (nullable_foo) |foo| {
      doSomethingWithFoo(foo);
    }

    // do some stuff
}

Once again, the notable thing here is that inside the if block, foo is no longer a nullable pointer, it is a pointer, which cannot be null.

One benefit to this is that functions which take pointers as arguments can be annotated with the "nonnull" attribute - __attribute__((nonnull)) in GCC. The optimizer can sometimes make better decisions knowing that pointer arguments cannot be null.

Nullable Type

A nullable is created by putting ? in front of a type. You can use compile-time reflection to access the child type of a nullable:

test.zig

const assert = @import("std").debug.assert;

test "nullable type" {
    // Declare a nullable and implicitly cast from null:
    var foo: ?i32 = null;

    // Implicitly cast from child type of a nullable
    foo = 1234;

    // Use compile-time reflection to access the child type of the nullable:
    comptime assert(@typeOf(foo).Child == i32);
}
$ zig test test.zig
Test 1/1 nullable type...OK

Casting

TODO: explain implicit vs explicit casting

TODO: resolve peer types builtin

TODO: truncate builtin

TODO: bitcast builtin

TODO: int to ptr builtin

TODO: ptr to int builtin

TODO: ptrcast builtin

TODO: explain number literals vs concrete types

void

TODO: assigning void has no codegen

TODO: hashmap with void becomes a set

TODO: difference between c_void and void

TODO: void is the default return value of functions

TODO: functions require assigning the return value

this

TODO: example of this referring to Self struct

TODO: example of this referring to recursion function

TODO: example of this referring to basic block for @setRuntimeSafety

comptime

Zig places importance on the concept of whether an expression is known at compile-time. There are a few different places this concept is used, and these building blocks are used to keep the language small, readable, and powerful.

Introducing the Compile-Time Concept

Compile-Time Parameters

Compile-time parameters is how Zig implements generics. It is compile-time duck typing.

fn max(comptime T: type, a: T, b: T) T {
    return if (a > b) a else b;
}
fn gimmeTheBiggerFloat(a: f32, b: f32) f32 {
    return max(f32, a, b);
}
fn gimmeTheBiggerInteger(a: u64, b: u64) u64 {
    return max(u64, a, b);
}

In Zig, types are first-class citizens. They can be assigned to variables, passed as parameters to functions, and returned from functions. However, they can only be used in expressions which are known at compile-time, which is why the parameter T in the above snippet must be marked with comptime.

A comptime parameter means that:

For example, if we were to introduce another function to the above snippet:

test.zig

fn max(comptime T: type, a: T, b: T) T {
    return if (a > b) a else b;
}
test "try to pass a runtime type" {
    foo(false);
}
fn foo(condition: bool) void {
    const result = max(
        if (condition) f32 else u64,
        1234,
        5678);
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:9:9: error: unable to evaluate constant expression
        if (condition) f32 else u64,
        ^

This is an error because the programmer attempted to pass a value only known at run-time to a function which expects a value known at compile-time.

Another way to get an error is if we pass a type that violates the type checker when the function is analyzed. This is what it means to have compile-time duck typing.

For example:

test.zig

fn max(comptime T: type, a: T, b: T) T {
    return if (a > b) a else b;
}
test "try to compare bools" {
    _ = max(bool, true, false);
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:2:18: error: operator not allowed for type 'bool'
    return if (a > b) a else b;
                 ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:12: note: called from here
    _ = max(bool, true, false);
           ^

On the flip side, inside the function definition with the comptime parameter, the value is known at compile-time. This means that we actually could make this work for the bool type if we wanted to:

test.zig

fn max(comptime T: type, a: T, b: T) T {
    if (T == bool) {
        return a or b;
    } else if (a > b) {
        return a;
    } else {
        return b;
    }
}
test "try to compare bools" {
    @import("std").debug.assert(max(bool, false, true) == true);
}
$ zig test test.zig
Test 1/1 try to compare bools...OK

This works because Zig implicitly inlines if expressions when the condition is known at compile-time, and the compiler guarantees that it will skip analysis of the branch not taken.

This means that the actual function generated for max in this situation looks like this:

fn max(a: bool, b: bool) bool {
    return a or b;
}

All the code that dealt with compile-time known values is eliminated and we are left with only the necessary run-time code to accomplish the task.

This works the same way for switch expressions - they are implicitly inlined when the target expression is compile-time known.

Compile-Time Variables

In Zig, the programmer can label variables as comptime. This guarantees to the compiler that every load and store of the variable is performed at compile-time. Any violation of this results in a compile error.

This combined with the fact that we can inline loops allows us to write a function which is partially evaluated at compile-time and partially at run-time.

For example:

comptime_vars.zig

const assert = @import("std").debug.assert;

const CmdFn = struct {
    name: []const u8,
    func: fn(i32) i32,
};

const cmd_fns = []CmdFn{
    CmdFn {.name = "one", .func = one},
    CmdFn {.name = "two", .func = two},
    CmdFn {.name = "three", .func = three},
};
fn one(value: i32) i32 { return value + 1; }
fn two(value: i32) i32 { return value + 2; }
fn three(value: i32) i32 { return value + 3; }

fn performFn(comptime prefix_char: u8, start_value: i32) i32 {
    var result: i32 = start_value;
    comptime var i = 0;
    inline while (i < cmd_fns.len) : (i += 1) {
        if (cmd_fns[i].name[0] == prefix_char) {
            result = cmd_fns[i].func(result);
        }
    }
    return result;
}

test "perform fn" {
    assert(performFn('t', 1) == 6);
    assert(performFn('o', 0) == 1);
    assert(performFn('w', 99) == 99);
}
$ zig test comptime_vars.zig
Test 1/1 perform fn...OK

This example is a bit contrived, because the compile-time evaluation component is unnecessary; this code would work fine if it was all done at run-time. But it does end up generating different code. In this example, the function performFn is generated three different times, for the different values of prefix_char provided:

// From the line:
// assert(performFn('t', 1) == 6);
fn performFn(start_value: i32) i32 {
    var result: i32 = start_value;
    result = two(result);
    result = three(result);
    return result;
}
// From the line:
// assert(performFn('o', 0) == 1);
fn performFn(start_value: i32) i32 {
    var result: i32 = start_value;
    result = one(result);
    return result;
}
// From the line:
// assert(performFn('w', 99) == 99);
fn performFn(start_value: i32) i32 {
    var result: i32 = start_value;
    return result;
}

Note that this happens even in a debug build; in a release build these generated functions still pass through rigorous LLVM optimizations. The important thing to note, however, is not that this is a way to write more optimized code, but that it is a way to make sure that what should happen at compile-time, does happen at compile-time. This catches more errors and as demonstrated later in this article, allows expressiveness that in other languages requires using macros, generated code, or a preprocessor to accomplish.

Compile-Time Expressions

In Zig, it matters whether a given expression is known at compile-time or run-time. A programmer can use a comptime expression to guarantee that the expression will be evaluated at compile-time. If this cannot be accomplished, the compiler will emit an error. For example:

test.zig

extern fn exit() noreturn;

test "foo" {
    comptime {
        exit();
    }
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:5:9: error: unable to evaluate constant expression
        exit();
        ^

It doesn't make sense that a program could call exit() (or any other external function) at compile-time, so this is a compile error. However, a comptime expression does much more than sometimes cause a compile error.

Within a comptime expression:

This means that a programmer can create a function which is called both at compile-time and run-time, with no modification to the function required.

Let's look at an example:

test.zig

const assert = @import("std").debug.assert;

fn fibonacci(index: u32) u32 {
    if (index < 2) return index;
    return fibonacci(index - 1) + fibonacci(index - 2);
}

test "fibonacci" {
    // test fibonacci at run-time
    assert(fibonacci(7) == 13);

    // test fibonacci at compile-time
    comptime {
        assert(fibonacci(7) == 13);
    }
}
$ zig test test.zig
Test 1/1 fibonacci...OK

Imagine if we had forgotten the base case of the recursive function and tried to run the tests:

test.zig

const assert = @import("std").debug.assert;

fn fibonacci(index: u32) u32 {
    //if (index < 2) return index;
    return fibonacci(index - 1) + fibonacci(index - 2);
}

test "fibonacci" {
    comptime {
        assert(fibonacci(7) == 13);
    }
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:5:28: error: operation caused overflow
    return fibonacci(index - 1) + fibonacci(index - 2);
                           ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:10:25: note: called from here
        assert(fibonacci(7) == 13);
                        ^

The compiler produces an error which is a stack trace from trying to evaluate the function at compile-time.

Luckily, we used an unsigned integer, and so when we tried to subtract 1 from 0, it triggered undefined behavior, which is always a compile error if the compiler knows it happened. But what would have happened if we used a signed integer?

test.zig

const assert = @import("std").debug.assert;

fn fibonacci(index: i32) i32 {
    //if (index < 2) return index;
    return fibonacci(index - 1) + fibonacci(index - 2);
}

test "fibonacci" {
    comptime {
        assert(fibonacci(7) == 13);
    }
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: error: evaluation exceeded 1000 backwards branches
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:21: note: called from here
    return fibonacci(index - 1) + fibonacci(index - 2);
                    ^

The compiler noticed that evaluating this function at compile-time took a long time, and thus emitted a compile error and gave up. If the programmer wants to increase the budget for compile-time computation, they can use a built-in function called @setEvalBranchQuota to change the default number 1000 to something else.

What if we fix the base case, but put the wrong value in the assert line?

test.zig

const assert = @import("std").debug.assert;

fn fibonacci(index: i32) i32 {
    if (index < 2) return index;
    return fibonacci(index - 1) + fibonacci(index - 2);
}

test "fibonacci" {
    comptime {
        assert(fibonacci(7) == 99999);
    }
}
$ zig test test.zig
/home/andy/dev/zig/build/lib/zig/std/debug/index.zig:84:13: error: encountered @panic at compile-time
            @panic("assertion failure");
            ^
/home/andy/dev/zig/docgen_tmp/test.zig:10:15: note: called from here
        assert(fibonacci(7) == 99999);
              ^

What happened is Zig started interpreting the assert function with the parameter ok set to false. When the interpreter hit unreachable it emitted a compile error, because reaching unreachable code is undefined behavior, and undefined behavior causes a compile error if it is detected at compile-time.

In the global scope (outside of any function), all expressions are implicitly comptime expressions. This means that we can use functions to initialize complex static data. For example:

test.zig

const first_25_primes = firstNPrimes(25);
const sum_of_first_25_primes = sum(first_25_primes);

fn firstNPrimes(comptime n: usize) [n]i32 {
    var prime_list: [n]i32 = undefined;
    var next_index: usize = 0;
    var test_number: i32 = 2;
    while (next_index < prime_list.len) : (test_number += 1) {
        var test_prime_index: usize = 0;
        var is_prime = true;
        while (test_prime_index < next_index) : (test_prime_index += 1) {
            if (test_number % prime_list[test_prime_index] == 0) {
                is_prime = false;
                break;
            }
        }
        if (is_prime) {
            prime_list[next_index] = test_number;
            next_index += 1;
        }
    }
    return prime_list;
}

fn sum(numbers: []const i32) i32 {
    var result: i32 = 0;
    for (numbers) |x| {
        result += x;
    }
    return result;
}

test "variable values" {
    @import("std").debug.assert(sum_of_first_25_primes == 1060);
}
$ zig test test.zig
Test 1/1 variable values...OK

When we compile this program, Zig generates the constants with the answer pre-computed. Here are the lines from the generated LLVM IR:

@0 = internal unnamed_addr constant [25 x i32] [i32 2, i32 3, i32 5, i32 7, i32 11, i32 13, i32 17, i32 19, i32 23, i32 29, i32 31, i32 37, i32 41, i32 43, i32 47, i32 53, i32 59, i32 61, i32 67, i32 71, i32 73, i32 79, i32 83, i32 89, i32 97]
@1 = internal unnamed_addr constant i32 1060

Note that we did not have to do anything special with the syntax of these functions. For example, we could call the sum function as is with a slice of numbers whose length and values were only known at run-time.

Generic Data Structures

Zig uses these capabilities to implement generic data structures without introducing any special-case syntax. If you followed along so far, you may already know how to create a generic data structure.

Here is an example of a generic List data structure, that we will instantiate with the type i32. In Zig we refer to the type as List(i32).

fn List(comptime T: type) type {
    return struct {
        items: []T,
        len: usize,
    };
}

That's it. It's a function that returns an anonymous struct. For the purposes of error messages and debugging, Zig infers the name "List(i32)" from the function name and parameters invoked when creating the anonymous struct.

To keep the language small and uniform, all aggregate types in Zig are anonymous. To give a type a name, we assign it to a constant:

const Node = struct {
    next: &Node,
    name: []u8,
};

This works because all top level declarations are order-independent, and as long as there isn't an actual infinite regression, values can refer to themselves, directly or indirectly. In this case, Node refers to itself as a pointer, which is not actually an infinite regression, so it works fine.

Case Study: printf in Zig

Putting all of this together, let's see how printf works in Zig.

printf.zig

const warn = @import("std").debug.warn;

const a_number: i32 = 1234;
const a_string = "foobar";

pub fn main() void {
    warn("here is a string: '{}' here is a number: {}\n", a_string, a_number);
}
$ zig build-exe printf.zig
$ ./printf
here is a string: 'foobar' here is a number: 1234

Let's crack open the implementation of this and see how it works:

/// Calls print and then flushes the buffer.
pub fn printf(self: &OutStream, comptime format: []const u8, args: ...) error!void {
    const State = enum {
        Start,
        OpenBrace,
        CloseBrace,
    };

    comptime var start_index: usize = 0;
    comptime var state = State.Start;
    comptime var next_arg: usize = 0;

    inline for (format) |c, i| {
        switch (state) {
            State.Start => switch (c) {
                '{' => {
                    if (start_index < i) try self.write(format[start_index..i]);
                    state = State.OpenBrace;
                },
                '}' => {
                    if (start_index < i) try self.write(format[start_index..i]);
                    state = State.CloseBrace;
                },
                else => {},
            },
            State.OpenBrace => switch (c) {
                '{' => {
                    state = State.Start;
                    start_index = i;
                },
                '}' => {
                    try self.printValue(args[next_arg]);
                    next_arg += 1;
                    state = State.Start;
                    start_index = i + 1;
                },
                else => @compileError("Unknown format character: " ++ c),
            },
            State.CloseBrace => switch (c) {
                '}' => {
                    state = State.Start;
                    start_index = i;
                },
                else => @compileError("Single '}' encountered in format string"),
            },
        }
    }
    comptime {
        if (args.len != next_arg) {
            @compileError("Unused arguments");
        }
        if (state != State.Start) {
            @compileError("Incomplete format string: " ++ format);
        }
    }
    if (start_index < format.len) {
        try self.write(format[start_index..format.len]);
    }
    try self.flush();
}

This is a proof of concept implementation; the actual function in the standard library has more formatting capabilities.

Note that this is not hard-coded into the Zig compiler; this is userland code in the standard library.

When this function is analyzed from our example code above, Zig partially evaluates the function and emits a function that actually looks like this:

pub fn printf(self: &OutStream, arg0: i32, arg1: []const u8) !void {
    try self.write("here is a string: '");
    try self.printValue(arg0);
    try self.write("' here is a number: ");
    try self.printValue(arg1);
    try self.write("\n");
    try self.flush();
}

printValue is a function that takes a parameter of any type, and does different things depending on the type:

pub fn printValue(self: &OutStream, value: var) !void {
    const T = @typeOf(value);
    if (@isInteger(T)) {
        return self.printInt(T, value);
    } else if (@isFloat(T)) {
        return self.printFloat(T, value);
    } else if (@canImplicitCast([]const u8, value)) {
        const casted_value = ([]const u8)(value);
        return self.write(casted_value);
    } else {
        @compileError("Unable to print type '" ++ @typeName(T) ++ "'");
    }
}

And now, what happens if we give too many arguments to printf?

test.zig

const warn = @import("std").debug.warn;

const a_number: i32 = 1234;
const a_string = "foobar";

test "printf too many arguments" {
    warn("here is a string: '{}' here is a number: {}\n",
        a_string, a_number, a_number);
}
$ zig test test.zig
/home/andy/dev/zig/build/lib/zig/std/fmt/index.zig:183:13: error: Unused arguments
            @compileError("Unused arguments");
            ^
/home/andy/dev/zig/build/lib/zig/std/io.zig:236:34: note: called from here
            return std.fmt.format(self, Error, self.writeFn, format, args);
                                 ^
/home/andy/dev/zig/build/lib/zig/std/debug/index.zig:22:17: note: called from here
    stderr.print(fmt, args) catch return;
                ^
/home/andy/dev/zig/docgen_tmp/test.zig:7:9: note: called from here
    warn("here is a string: '{}' here is a number: {}\n",
        ^

Zig gives programmers the tools needed to protect themselves against their own mistakes.

Zig doesn't care whether the format argument is a string literal, only that it is a compile-time known value that is implicitly castable to a []const u8:

printf.zig

const warn = @import("std").debug.warn;

const a_number: i32 = 1234;
const a_string = "foobar";
const fmt = "here is a string: '{}' here is a number: {}\n";

pub fn main() void {
    warn(fmt, a_string, a_number);
}
$ zig build-exe printf.zig
$ ./printf
here is a string: 'foobar' here is a number: 1234

This works fine.

Zig does not special case string formatting in the compiler and instead exposes enough power to accomplish this task in userland. It does so without introducing another language on top of Zig, such as a macro language or a preprocessor language. It's Zig all the way down.

TODO: suggestion to not use inline unless necessary

inline

TODO: inline while

TODO: inline for

TODO: suggestion to not use inline unless necessary

Assembly

TODO: example of inline assembly

TODO: example of module level assembly

TODO: example of using inline assembly return value

TODO: example of using inline assembly assigning values to variables

Atomics

TODO: @fence()

TODO: @atomic rmw

TODO: builtin atomic memory ordering enum

Builtin Functions

Builtin functions are provided by the compiler and are prefixed with @. The comptime keyword on a parameter means that the parameter must be known at compile time.

@addWithOverflow

@addWithOverflow(comptime T: type, a: T, b: T, result: &T) -> bool

Performs *result = a + b. If overflow or underflow occurs, stores the overflowed bits in result and returns true. If no overflow or underflow occurs, returns false.

@ArgType

TODO

@atomicRmw

@atomicRmw(comptime T: type, ptr: &T, comptime op: builtin.AtomicRmwOp, operand: T, comptime ordering: builtin.AtomicOrder) -> T

This builtin function atomically modifies memory and then returns the previous value.

T must be a pointer type, a bool, or an integer whose bit count meets these requirements:

TODO right now bool is not accepted. Also I think we could make non powers of 2 work fine, maybe we can remove this restriction

@bitCast

@bitCast(comptime DestType: type, value: var) -> DestType

Converts a value of one type to another type.

Asserts that @sizeOf(@typeOf(value)) == @sizeOf(DestType).

Asserts that @typeId(DestType) != @import("builtin").TypeId.Pointer. Use @ptrCast or @intToPtr if you need this.

Can be used for these things for example:

Works at compile-time if value is known at compile time. It's a compile error to bitcast a struct to a scalar type of the same size since structs have undefined layout. However if the struct is packed then it works.

@breakpoint

@breakpoint()

This function inserts a platform-specific debug trap instruction which causes debuggers to break there.

This function is only valid within function scope.

@alignCast

@alignCast(comptime alignment: u29, ptr: var) -> var

ptr can be &T, fn(), ?&T, ?fn(), or []T. It returns the same type as ptr except with the alignment adjusted to the new value.

A pointer alignment safety check is added to the generated code to make sure the pointer is aligned as promised.

@alignOf

@alignOf(comptime T: type) -> (number literal)

This function returns the number of bytes that this type should be aligned to for the current target to match the C ABI. When the child type of a pointer has this alignment, the alignment can be omitted from the type.

const assert = @import("std").debug.assert;
comptime {
    assert(&u32 == &align(@alignOf(u32)) u32);
}

The result is a target-specific compile time constant. It is guaranteed to be less than or equal to @sizeOf(T).

See also:

@cDefine

@cDefine(comptime name: []u8, value)

This function can only occur inside @cImport.

This appends #define $name $value to the @cImport temporary buffer.

To define without a value, like this:

#define _GNU_SOURCE

Use the void value, like this:

@cDefine("_GNU_SOURCE", {})

See also:

@cImport

@cImport(expression) -> (namespace)

This function parses C code and imports the functions, types, variables, and compatible macro definitions into the result namespace.

expression is interpreted at compile time. The builtin functions @cInclude, @cDefine, and @cUndef work within this expression, appending to a temporary buffer which is then parsed as C code.

Usually you should only have one @cImport in your entire application, because it saves the compiler from invoking clang multiple times, and prevents inline functions from being duplicated.

Reasons for having multiple @cImport expressions would be:

See also:

@cInclude

@cInclude(comptime path: []u8)

This function can only occur inside @cImport.

This appends #include <$path>\n to the c_import temporary buffer.

See also:

@cUndef

@cUndef(comptime name: []u8)

This function can only occur inside @cImport.

This appends #undef $name to the @cImport temporary buffer.

See also:

@canImplicitCast

@canImplicitCast(comptime T: type, value) -> bool

Returns whether a value can be implicitly casted to a given type.

@clz

@clz(x: T) -> U

This function counts the number of leading zeroes in x which is an integer type T.

The return type U is an unsigned integer with the minimum number of bits that can represent the value T.bit_count.

If x is zero, @clz returns T.bit_count.

@cmpxchg

@cmpxchg(ptr: &T, cmp: T, new: T, success_order: AtomicOrder, fail_order: AtomicOrder) -> bool

This function performs an atomic compare exchange operation.

AtomicOrder can be found with @import("builtin").AtomicOrder.

@typeOf(ptr).alignment must be >= @sizeOf(T).

See also:

@compileError

@compileError(comptime msg: []u8)

This function, when semantically analyzed, causes a compile error with the message msg.

There are several ways that code avoids being semantically checked, such as using if or switch with compile time constants, and comptime functions.

@compileLog

@compileLog(args: ...)

This function prints the arguments passed to it at compile-time.

To prevent accidentally leaving compile log statements in a codebase, a compilation error is added to the build, pointing to the compile log statement. This error prevents code from being generated, but does not otherwise interfere with analysis.

This function can be used to do "printf debugging" on compile-time executing code.

test.zig

const warn = @import("std").debug.warn;

const num1 = blk: {
    var val1: i32 = 99;
    @compileLog("comptime val1 = ", val1); 
    val1 = val1 + 1;
    break :blk val1;
};

test "main" {
    @compileLog("comptime in main"); 

    warn("Runtime in main, num1 = {}.\n", num1);
}
$ zig test test.zig
| "comptime in main"
| "comptime val1 = ", 99
/home/andy/dev/zig/docgen_tmp/test.zig:11:5: error: found compile log statement
    @compileLog("comptime in main"); 
    ^
/home/andy/dev/zig/docgen_tmp/test.zig:5:5: error: found compile log statement
    @compileLog("comptime val1 = ", val1); 
    ^

will ouput:

If all @compileLog calls are removed or not encountered by analysis, the program compiles successfully and the generated executable prints:

test.zig

const warn = @import("std").debug.warn;

const num1 = blk: {
    var val1: i32 = 99;
    val1 = val1 + 1;
    break :blk val1;
};

test "main" {
    warn("Runtime in main, num1 = {}.\n", num1);
}
$ zig test test.zig
Test 1/1 main...Runtime in main, num1 = 100.
OK

@ctz

@ctz(x: T) -> U

This function counts the number of trailing zeroes in x which is an integer type T.

The return type U is an unsigned integer with the minimum number of bits that can represent the value T.bit_count.

If x is zero, @ctz returns T.bit_count.

@divExact

@divExact(numerator: T, denominator: T) -> T

Exact division. Caller guarantees denominator != 0 and @divTrunc(numerator, denominator) * denominator == numerator.

For a function that returns a possible error code, use @import("std").math.divExact.

See also:

@divFloor

@divFloor(numerator: T, denominator: T) -> T

Floored division. Rounds toward negative infinity. For unsigned integers it is the same as numerator / denominator. Caller guarantees denominator != 0 and !(@typeId(T) == builtin.TypeId.Int and T.is_signed and numerator == @minValue(T) and denominator == -1).

For a function that returns a possible error code, use @import("std").math.divFloor.

See also:

@divTrunc

@divTrunc(numerator: T, denominator: T) -> T

Truncated division. Rounds toward zero. For unsigned integers it is the same as numerator / denominator. Caller guarantees denominator != 0 and !(@typeId(T) == builtin.TypeId.Int and T.is_signed and numerator == @minValue(T) and denominator == -1).

For a function that returns a possible error code, use @import("std").math.divTrunc.

See also:

@embedFile

@embedFile(comptime path: []const u8) -> [X]u8

This function returns a compile time constant fixed-size array with length equal to the byte count of the file given by path. The contents of the array are the contents of the file.

path is absolute or relative to the current file, just like @import.

See also:

@export

@export(comptime name: []const u8, target: var, linkage: builtin.GlobalLinkage) -> []const u8

Creates a symbol in the output object file.

@tagName

@tagName(value: var) -> []const u8

Converts an enum value or union value to a slice of bytes representing the name.

@TagType

@TagType(T: type) -> type

For an enum, returns the integer type that is used to store the enumeration value.

For a union, returns the enum type that is used to store the tag value.

@errorName

@errorName(err: error) -> []u8

This function returns the string representation of an error. If an error declaration is:

error OutOfMem

Then the string representation is "OutOfMem".

If there are no calls to @errorName in an entire application, or all calls have a compile-time known value for err, then no error name table will be generated.

@errorReturnTrace

@errorReturnTrace() -> ?&builtin.StackTrace

If the binary is built with error return tracing, and this function is invoked in a function that calls a function with an error or error union return type, returns a stack trace object. Otherwise returns `null`.

@fence

@fence(order: AtomicOrder)

The fence function is used to introduce happens-before edges between operations.

AtomicOrder can be found with @import("builtin").AtomicOrder.

See also:

@fieldParentPtr

@fieldParentPtr(comptime ParentType: type, comptime field_name: []const u8,
    field_ptr: &T) -> &ParentType

Given a pointer to a field, returns the base pointer of a struct.

@frameAddress

@frameAddress()

This function returns the base pointer of the current stack frame.

The implications of this are target specific and not consistent across all platforms. The frame address may not be available in release mode due to aggressive optimizations.

This function is only valid within function scope.

@import

@import(comptime path: []u8) -> (namespace)

This function finds a zig file corresponding to path and imports all the public top level declarations into the resulting namespace.

path can be a relative or absolute path, or it can be the name of a package. If it is a relative path, it is relative to the file that contains the @import function call.

The following packages are always available:

See also:

@inlineCall

@inlineCall(function: X, args: ...) -> Y

This calls a function, in the same way that invoking an expression with parentheses does:

test.zig

const assert = @import("std").debug.assert;

test "inline function call" {
    assert(@inlineCall(add, 3, 9) == 12);
}

fn add(a: i32, b: i32) i32 { return a + b; }
$ zig test test.zig
Test 1/1 inline function call...OK

Unlike a normal function call, however, @inlineCall guarantees that the call will be inlined. If the call cannot be inlined, a compile error is emitted.

See also:

@intToPtr

@intToPtr(comptime DestType: type, int: usize) -> DestType

Converts an integer to a pointer. To convert the other way, use @ptrToInt.

@IntType

@IntType(comptime is_signed: bool, comptime bit_count: u8) -> type

This function returns an integer type with the given signness and bit count.

@maxValue

@maxValue(comptime T: type) -> (number literal)

This function returns the maximum value of the integer type T.

The result is a compile time constant.

@memberCount

@memberCount(comptime T: type) -> (number literal)

This function returns the number of members in a struct, enum, or union type.

The result is a compile time constant.

It does not include functions, variables, or constants.

@memberName

@memberName(comptime T: type, comptime index: usize) -> [N]u8

Returns the field name of a struct, union, or enum.

The result is a compile time constant.

It does not include functions, variables, or constants.

@memberType

@memberType(comptime T: type, comptime index: usize) -> type

Returns the field type of a struct or union.

@memcpy

@memcpy(noalias dest: &u8, noalias source: &const u8, byte_count: usize)

This function copies bytes from one region of memory to another. dest and source are both pointers and must not overlap.

This function is a low level intrinsic with no safety mechanisms. Most code should not use this function, instead using something like this:

for (source[0...byte_count]) |b, i| dest[i] = b;

The optimizer is intelligent enough to turn the above snippet into a memcpy.

There is also a standard library function for this:

const mem = @import("std").mem;
mem.copy(u8, dest[0...byte_count], source[0...byte_count]);

@memset

@memset(dest: &u8, c: u8, byte_count: usize)

This function sets a region of memory to c. dest is a pointer.

This function is a low level intrinsic with no safety mechanisms. Most code should not use this function, instead using something like this:

for (dest[0...byte_count]) |*b| *b = c;

The optimizer is intelligent enough to turn the above snippet into a memset.

There is also a standard library function for this:

const mem = @import("std").mem;
mem.set(u8, dest, c);

@minValue

@minValue(comptime T: type) -> (number literal)

This function returns the minimum value of the integer type T.

The result is a compile time constant.

@mod

@mod(numerator: T, denominator: T) -> T

Modulus division. For unsigned integers this is the same as numerator % denominator. Caller guarantees denominator > 0.

For a function that returns an error code, see @import("std").math.mod.

See also:

@mulWithOverflow

@mulWithOverflow(comptime T: type, a: T, b: T, result: &T) -> bool

Performs *result = a * b. If overflow or underflow occurs, stores the overflowed bits in result and returns true. If no overflow or underflow occurs, returns false.

@noInlineCall

@noInlineCall(function: var, args: ...) -> var

This calls a function, in the same way that invoking an expression with parentheses does:

const assert = @import("std").debug.assert;
test "noinline function call" {
    assert(@noInlineCall(add, 3, 9) == 12);
}

fn add(a: i32, b: i32) -> i32 { a + b }

Unlike a normal function call, however, @noInlineCall guarantees that the call will not be inlined. If the call must be inlined, a compile error is emitted.

See also:

@offsetOf

@offsetOf(comptime T: type, comptime field_name: [] const u8) -> (number literal)

This function returns the byte offset of a field relative to its containing struct.

@OpaqueType

@OpaqueType() -> type

Creates a new type with an unknown size and alignment.

This is typically used for type safety when interacting with C code that does not expose struct details. Example:

test.zig

const Derp = @OpaqueType();
const Wat = @OpaqueType();

extern fn bar(d: &Derp) void;
export fn foo(w: &Wat) void {
    bar(w);
}

test "call foo" {
    foo(undefined);
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:6:9: error: expected type '&Derp', found '&Wat'
    bar(w);
        ^

@panic

@panic(message: []const u8) -> noreturn

Invokes the panic handler function. By default the panic handler function calls the public panic function exposed in the root source file, or if there is not one specified, invokes the one provided in std/special/panic.zig.

Generally it is better to use @import("std").debug.panic. However, @panic can be useful for 2 scenarios:

See also:

@ptrCast

@ptrCast(comptime DestType: type, value: var) -> DestType

Converts a pointer of one type to a pointer of another type.

@ptrToInt

@ptrToInt(value: var) -> usize

Converts value to a usize which is the address of the pointer. value can be one of these types:

To convert the other way, use @intToPtr

@rem

@rem(numerator: T, denominator: T) -> T

Remainder division. For unsigned integers this is the same as numerator % denominator. Caller guarantees denominator > 0.

For a function that returns an error code, see @import("std").math.rem.

See also:

@returnAddress

@returnAddress()

This function returns a pointer to the return address of the current stack frame.

The implications of this are target specific and not consistent across all platforms.

This function is only valid within function scope.

@setAlignStack

@setAlignStack(comptime alignment: u29)

Ensures that a function will have a stack alignment of at least alignment bytes.

@setCold

@setCold(is_cold: bool)

Tells the optimizer that a function is rarely called.

@setRuntimeSafety

@setRuntimeSafety(safety_on: bool)

Sets whether runtime safety checks are on for the scope that contains the function call.

@setEvalBranchQuota

@setEvalBranchQuota(new_quota: usize)

Changes the maximum number of backwards branches that compile-time code execution can use before giving up and making a compile error.

If the new_quota is smaller than the default quota (1000) or a previously explicitly set quota, it is ignored.

Example:

test.zig

test "foo" {
    comptime {
        var i = 0;
        while (i < 1001) : (i += 1) {}
    }
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:4:9: error: evaluation exceeded 1000 backwards branches
        while (i < 1001) : (i += 1) {}
        ^

Now we use @setEvalBranchQuota:

test.zig

test "foo" {
    comptime {
        @setEvalBranchQuota(1001);
        var i = 0;
        while (i < 1001) : (i += 1) {}
    }
}
$ zig test test.zig
Test 1/1 foo...OK

See also:

@setFloatMode

@setFloatMode(scope, mode: @import("builtin").FloatMode)

Sets the floating point mode for a given scope. Possible values are:

pub const FloatMode = enum {
    Optimized,
    Strict,
};

See also:

@setGlobalLinkage

@setGlobalLinkage(global_variable_name, comptime linkage: GlobalLinkage)

GlobalLinkage can be found with @import("builtin").GlobalLinkage.

See also:

@setGlobalSection

@setGlobalSection(global_variable_name, comptime section_name: []const u8) -> bool

Puts the global variable in the specified section.

@shlExact

@shlExact(value: T, shift_amt: Log2T) -> T

Performs the left shift operation (<<). Caller guarantees that the shift will not shift any 1 bits out.

The type of shift_amt is an unsigned integer with log2(T.bit_count) bits. This is because shift_amt >= T.bit_count is undefined behavior.

See also:

@shlWithOverflow

@shlWithOverflow(comptime T: type, a: T, shift_amt: Log2T, result: &T) -> bool

Performs *result = a << b. If overflow or underflow occurs, stores the overflowed bits in result and returns true. If no overflow or underflow occurs, returns false.

The type of shift_amt is an unsigned integer with log2(T.bit_count) bits. This is because shift_amt >= T.bit_count is undefined behavior.

See also:

@shrExact

@shrExact(value: T, shift_amt: Log2T) -> T

Performs the right shift operation (>>). Caller guarantees that the shift will not shift any 1 bits out.

The type of shift_amt is an unsigned integer with log2(T.bit_count) bits. This is because shift_amt >= T.bit_count is undefined behavior.

See also:

@sizeOf

@sizeOf(comptime T: type) -> (number literal)

This function returns the number of bytes it takes to store T in memory.

The result is a target-specific compile time constant.

@subWithOverflow

@subWithOverflow(comptime T: type, a: T, b: T, result: &T) -> bool

Performs *result = a - b. If overflow or underflow occurs, stores the overflowed bits in result and returns true. If no overflow or underflow occurs, returns false.

@truncate

@truncate(comptime T: type, integer) -> T

This function truncates bits from an integer type, resulting in a smaller integer type.

The following produces a crash in debug mode and undefined behavior in release mode:

const a: u16 = 0xabcd;
const b: u8 = u8(a);

However this is well defined and working code:

const a: u16 = 0xabcd;
const b: u8 = @truncate(u8, a);
// b is now 0xcd

This function always truncates the significant bits of the integer, regardless of endianness on the target platform.

@typeId

@typeId(comptime T: type) -> @import("builtin").TypeId

Returns which kind of type something is. Possible values:

pub const TypeId = enum {
    Type,
    Void,
    Bool,
    NoReturn,
    Int,
    Float,
    Pointer,
    Array,
    Struct,
    FloatLiteral,
    IntLiteral,
    UndefinedLiteral,
    NullLiteral,
    Nullable,
    ErrorUnion,
    Error,
    Enum,
    Union,
    Fn,
    Namespace,
    Block,
    BoundFn,
    ArgTuple,
    Opaque,
};

@typeName

@typeName(T: type) -> []u8

This function returns the string representation of a type.

@typeOf

@typeOf(expression) -> type

This function returns a compile-time constant, which is the type of the expression passed as an argument. The expression is evaluated.

Build Mode

Zig has three build modes:

To add standard build options to a build.zig file:

const Builder = @import("std").build.Builder;

pub fn build(b: &Builder) void {
    const exe = b.addExecutable("example", "example.zig");
    exe.setBuildMode(b.standardReleaseOptions());
    b.default_step.dependOn(&exe.step);
}

This causes these options to be available:

  -Drelease-safe=(bool)  optimizations on and safety on
  -Drelease-fast=(bool)  optimizations on and safety off

Debug

$ zig build-exe example.zig

ReleaseFast

$ zig build-exe example.zig --release-fast

ReleaseSafe

$ zig build-exe example.zig --release-safe

See also:

Undefined Behavior

Zig has many instances of undefined behavior. If undefined behavior is detected at compile-time, Zig emits an error. Most undefined behavior that cannot be detected at compile-time can be detected at runtime. In these cases, Zig has safety checks. Safety checks can be disabled on a per-block basis with @setRuntimeSafety. The ReleaseFast build mode disables all safety checks in order to facilitate optimizations.

When a safety check fails, Zig crashes with a stack trace, like this:

test.zig

test "safety check" {
    unreachable;
}
$ zig test test.zig
Test 1/1 safety check...reached unreachable code
/home/andy/dev/zig/docgen_tmp/test.zig:2:5: 0x203678 in ??? (test)
    unreachable;
    ^
/home/andy/dev/zig/build/lib/zig/std/special/test_runner.zig:11:25: 0x21d458 in ??? (test)
        try test_fn.func();
                        ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:85:22: 0x21d25b in ??? (test)
            root.main() catch |err| {
                     ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:62:20: 0x21d1bb in ??? (test)
    return callMain();
                   ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:52:39: 0x21d04c in ??? (test)
    std.os.posix.exit(callMainWithArgs(argc, argv, envp));
                                      ^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:39:5: 0x21cfd0 in ??? (test)
    @noInlineCall(posixCallMainAndExit);
    ^

Tests failed. Use the following command to reproduce the failure:
./zig-cache/test

Reaching Unreachable Code

At compile-time:

test.zig

comptime {
    assert(false);
}
fn assert(ok: bool) void {
    if (!ok) unreachable; // assertion failure
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:5:14: error: unable to evaluate constant expression
    if (!ok) unreachable; // assertion failure
             ^
/home/andy/dev/zig/docgen_tmp/test.zig:2:11: note: called from here
    assert(false);
          ^
/home/andy/dev/zig/docgen_tmp/test.zig:1:10: note: called from here
comptime {
         ^

At runtime crashes with the message reached unreachable code and a stack trace.

Index out of Bounds

At compile-time:

test.zig

comptime {
    const array = "hello";
    const garbage = array[5];
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:3:26: error: index 5 outside array of size 5
    const garbage = array[5];
                         ^

At runtime crashes with the message index out of bounds and a stack trace.

Cast Negative Number to Unsigned Integer

At compile-time:

test.zig

comptime {
    const value: i32 = -1;
    const unsigned = u32(value);
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:3:25: error: attempt to cast negative value to unsigned integer
    const unsigned = u32(value);
                        ^

At runtime crashes with the message attempt to cast negative value to unsigned integer and a stack trace.

If you are trying to obtain the maximum value of an unsigned integer, use @maxValue(T), where T is the integer type, such as u32.

Cast Truncates Data

At compile-time:

test.zig

comptime {
    const spartan_count: u16 = 300;
    const byte = u8(spartan_count);
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:3:20: error: cast from 'u16' to 'u8' truncates bits
    const byte = u8(spartan_count);
                   ^

At runtime crashes with the message integer cast truncated bits and a stack trace.

If you are trying to truncate bits, use @truncate(T, value), where T is the integer type, such as u32, and value is the value you want to truncate.

Integer Overflow

Default Operations

The following operators can cause integer overflow:

Example with addition at compile-time:

test.zig

comptime {
    var byte: u8 = 255;
    byte += 1;
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:3:10: error: operation caused overflow
    byte += 1;
         ^

At runtime crashes with the message integer overflow and a stack trace.

Standard Library Math Functions

These functions provided by the standard library return possible errors.

Example of catching an overflow for addition:

test.zig

const math = @import("std").math;
const warn = @import("std").debug.warn;
pub fn main() !void {
    var byte: u8 = 255;

    byte = if (math.add(u8, byte, 1)) |result| result else |err| {
        warn("unable to add one: {}\n", @errorName(err));
        return err;
    };

    warn("result: {}\n", byte);
}
$ zig build-exe test.zig
$ ./test
unable to add one: Overflow
error: Overflow
/home/andy/dev/zig/docgen_tmp/test.zig:8:9: 0x21d3e5 in ??? (test)
        return err;
        ^

Builtin Overflow Functions

These builtins return a bool of whether or not overflow occurred, as well as returning the overflowed bits:

Example of @addWithOverflow:

test.zig

const warn = @import("std").debug.warn;
pub fn main() void {
    var byte: u8 = 255;

    var result: u8 = undefined;
    if (@addWithOverflow(u8, byte, 10, &result)) {
        warn("overflowed result: {}\n", result);
    } else {
        warn("result: {}\n", result);
    }
}
$ zig build-exe test.zig
$ ./test
overflowed result: 9

Wrapping Operations

These operations have guaranteed wraparound semantics.

test.zig

const assert = @import("std").debug.assert;

test "wraparound addition and subtraction" {
    const x: i32 = @maxValue(i32);
    const min_val = x +% 1;
    assert(min_val == @minValue(i32));
    const max_val = min_val -% 1;
    assert(max_val == @maxValue(i32));
}
$ zig test test.zig
Test 1/1 wraparound addition and subtraction...OK

Exact Left Shift Overflow

At compile-time:

test.zig

comptime {
    const x = @shlExact(u8(0b01010101), 2);
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:2:15: error: operation caused overflow
    const x = @shlExact(u8(0b01010101), 2);
              ^

At runtime crashes with the message left shift overflowed bits and a stack trace.

Exact Right Shift Overflow

At compile-time:

test.zig

comptime {
    const x = @shrExact(u8(0b10101010), 2);
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:2:15: error: exact shift shifted out 1 bits
    const x = @shrExact(u8(0b10101010), 2);
              ^

At runtime crashes with the message right shift overflowed bits and a stack trace.

Division by Zero

At compile-time:

test.zig

comptime {
    const a: i32 = 1;
    const b: i32 = 0;
    const c = a / b;
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:4:17: error: division by zero
    const c = a / b;
                ^

At runtime crashes with the message division by zero and a stack trace.

Remainder Division by Zero

At compile-time:

test.zig

comptime {
    const a: i32 = 10;
    const b: i32 = 0;
    const c = a % b;
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:4:17: error: division by zero
    const c = a % b;
                ^

At runtime crashes with the message remainder division by zero and a stack trace.

Exact Division Remainder

TODO

Slice Widen Remainder

TODO

Attempt to Unwrap Null

At compile-time:

test.zig

comptime {
    const nullable_number: ?i32 = null;
    const number = ??nullable_number;
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:3:20: error: unable to unwrap null
    const number = ??nullable_number;
                   ^

At runtime crashes with the message attempt to unwrap null and a stack trace.

One way to avoid this crash is to test for null instead of assuming non-null, with the if expression:

test.zig

const warn = @import("std").debug.warn;
pub fn main() void {
    const nullable_number: ?i32 = null;

    if (nullable_number) |number| {
        warn("got number: {}\n", number);
    } else {
        warn("it's null\n");
    }
}
$ zig build-exe test.zig
$ ./test
it's null

Attempt to Unwrap Error

At compile-time:

test.zig

comptime {
    const number = getNumberOrFail() catch unreachable;
}

fn getNumberOrFail() !i32 {
    return error.UnableToReturnNumber;
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:2:38: error: caught unexpected error 'UnableToReturnNumber'
    const number = getNumberOrFail() catch unreachable;
                                     ^

At runtime crashes with the message attempt to unwrap error: ErrorCode and a stack trace.

One way to avoid this crash is to test for an error instead of assuming a successful result, with the if expression:

test.zig

const warn = @import("std").debug.warn;

pub fn main() void {
    const result = getNumberOrFail();

    if (result) |number| {
        warn("got number: {}\n", number);
    } else |err| {
        warn("got error: {}\n", @errorName(err));
    }
}

fn getNumberOrFail() !i32 {
    return error.UnableToReturnNumber;
}
$ zig build-exe test.zig
$ ./test
got error: UnableToReturnNumber

Invalid Error Code

At compile-time:

test.zig

comptime {
    const err = error.AnError;
    const number = u32(err) + 10;
    const invalid_err = error(number);
}
$ zig test test.zig
/home/andy/dev/zig/docgen_tmp/test.zig:4:30: error: integer value 11 represents no error
    const invalid_err = error(number);
                             ^

At runtime crashes with the message invalid error code and a stack trace.

Invalid Enum Cast

TODO

Incorrect Pointer Alignment

TODO

Wrong Union Field Access

TODO

Memory

TODO: explain no default allocator in zig

TODO: show how to use the allocator interface

TODO: mention debug allocator

TODO: importance of checking for allocation failure

TODO: mention overcommit and the OOM Killer

TODO: mention recursion

See also:

Compile Variables

Compile variables are accessible by importing the "builtin" package, which the compiler makes available to every Zig source file. It contains compile-time constants such as the current target, endianness, and release mode.

const builtin = @import("builtin");
const separator = if (builtin.os == builtin.Os.windows) '\\' else '/';

Example of what is imported with @import("builtin"):

pub const StackTrace = struct {
    index: usize,
    instruction_addresses: []usize,
};

pub const Os = enum {
    freestanding,
    ananas,
    cloudabi,
    dragonfly,
    freebsd,
    fuchsia,
    ios,
    kfreebsd,
    linux,
    lv2,
    macosx,
    netbsd,
    openbsd,
    solaris,
    windows,
    haiku,
    minix,
    rtems,
    nacl,
    cnk,
    bitrig,
    aix,
    cuda,
    nvcl,
    amdhsa,
    ps4,
    elfiamcu,
    tvos,
    watchos,
    mesa3d,
    contiki,
    zen,
};

pub const Arch = enum {
    armv8_2a,
    armv8_1a,
    armv8,
    armv8r,
    armv8m_baseline,
    armv8m_mainline,
    armv7,
    armv7em,
    armv7m,
    armv7s,
    armv7k,
    armv7ve,
    armv6,
    armv6m,
    armv6k,
    armv6t2,
    armv5,
    armv5te,
    armv4t,
    armeb,
    aarch64,
    aarch64_be,
    avr,
    bpfel,
    bpfeb,
    hexagon,
    mips,
    mipsel,
    mips64,
    mips64el,
    msp430,
    nios2,
    powerpc,
    powerpc64,
    powerpc64le,
    r600,
    amdgcn,
    riscv32,
    riscv64,
    sparc,
    sparcv9,
    sparcel,
    s390x,
    tce,
    tcele,
    thumb,
    thumbeb,
    i386,
    x86_64,
    xcore,
    nvptx,
    nvptx64,
    le32,
    le64,
    amdil,
    amdil64,
    hsail,
    hsail64,
    spir,
    spir64,
    kalimbav3,
    kalimbav4,
    kalimbav5,
    shave,
    lanai,
    wasm32,
    wasm64,
    renderscript32,
    renderscript64,
};

pub const Environ = enum {
    unknown,
    gnu,
    gnuabi64,
    gnueabi,
    gnueabihf,
    gnux32,
    code16,
    eabi,
    eabihf,
    android,
    musl,
    musleabi,
    musleabihf,
    msvc,
    itanium,
    cygnus,
    amdopencl,
    coreclr,
    opencl,
};

pub const ObjectFormat = enum {
    unknown,
    coff,
    elf,
    macho,
    wasm,
};

pub const GlobalLinkage = enum {
    Internal,
    Strong,
    Weak,
    LinkOnce,
};

pub const AtomicOrder = enum {
    Unordered,
    Monotonic,
    Acquire,
    Release,
    AcqRel,
    SeqCst,
};

pub const Mode = enum {
    Debug,
    ReleaseSafe,
    ReleaseFast,
};

pub const TypeId = enum {
    Type,
    Void,
    Bool,
    NoReturn,
    Int,
    Float,
    Pointer,
    Array,
    Struct,
    FloatLiteral,
    IntLiteral,
    UndefinedLiteral,
    NullLiteral,
    Nullable,
    ErrorUnion,
    Error,
    Enum,
    Union,
    Fn,
    Namespace,
    Block,
    BoundFn,
    ArgTuple,
    Opaque,
};

pub const FloatMode = enum {
    Optimized,
    Strict,
};

pub const Endian = enum {
    Big,
    Little,
};

pub const endian = Endian.Little;
pub const is_test = false;
pub const os = Os.linux;
pub const arch = Arch.x86_64;
pub const environ = Environ.gnu;
pub const object_format = ObjectFormat.elf;
pub const mode = Mode.Debug;
pub const link_libc = false;
pub const have_error_return_tracing = true;

See also:

Root Source File

TODO: explain how root source file finds other files

TODO: pub fn main

TODO: pub fn panic

TODO: if linking with libc you can use export fn main

TODO: order independent top level declarations

TODO: lazy analysis

TODO: using comptime { _ = @import() }

Zig Test

TODO: basic usage

TODO: lazy analysis

TODO: --test-filter

TODO: --test-name-prefix

TODO: testing in releasefast and releasesafe mode. assert still works

Zig Build System

TODO: explain purpose, it's supposed to replace make/cmake

TODO: example of building a zig executable

TODO: example of building a C library

C

Although Zig is independent of C, and, unlike most other languages, does not depend on libc, Zig acknowledges the importance of interacting with existing C code.

There are a few ways that Zig facilitates C interop.

C Type Primitives

These have guaranteed C ABI compatibility and can be used like any other type.

See also:

C String Literals

test.zig

extern fn puts(&const u8) void;

pub fn main() void {
    puts(c"this has a null terminator");
    puts(
        c\\and so
        c\\does this
        c\\multiline C string literal
    );
}
$ zig build-exe test.zig --library c
$ ./test
this has a null terminator
and so
does this
multiline C string literal

See also:

Import from C Header File

The @cImport builtin function can be used to directly import symbols from .h files:

test.zig

const c = @cImport({
    // See https://github.com/zig-lang/zig/issues/515
    @cDefine("_NO_CRT_STDIO_INLINE", "1");
    @cInclude("stdio.h");
});
pub fn main() void {
    _ = c.printf(c"hello\n");
}
$ zig build-exe test.zig --library c
$ ./test
hello

The @cImport function takes an expression as a parameter. This expression is evaluated at compile-time and is used to control preprocessor directives and include multiple .h files:

const builtin = @import("builtin");

const c = @cImport({
    @cDefine("NDEBUG", builtin.mode == builtin.Mode.ReleaseFast);
    if (something) {
        @cDefine("_GNU_SOURCE", {});
    }
    @cInclude("stdlib.h");
    if (something) {
        @cUndef("_GNU_SOURCE");
    }
    @cInclude("soundio.h");
});

See also:

Mixing Object Files

You can mix Zig object files with any other object files that respect the C ABI. Example:

base64.zig

const base64 = @import("std").base64;

export fn decode_base_64(dest_ptr: &u8, dest_len: usize,
    source_ptr: &const u8, source_len: usize) usize
{
    const src = source_ptr[0..source_len];
    const dest = dest_ptr[0..dest_len];
    const base64_decoder = base64.standard_decoder_unsafe;
    const decoded_size = base64_decoder.calcSize(src);
    base64_decoder.decode(dest[0..decoded_size], src);
    return decoded_size;
}

test.c

// This header is generated by zig from base64.zig
#include "base64.h"

#include <string.h>
#include <stdio.h>

int main(int argc, char **argv) {
    const char *encoded = "YWxsIHlvdXIgYmFzZSBhcmUgYmVsb25nIHRvIHVz";
    char buf[200];

    size_t len = decode_base_64(buf, 200, encoded, strlen(encoded));
    buf[len] = 0;
    puts(buf);

    return 0;
}

build.zig

const Builder = @import("std").build.Builder;

pub fn build(b: &Builder) void {
    const obj = b.addObject("base64", "base64.zig");

    const exe = b.addCExecutable("test");
    exe.addCompileFlags([][]const u8 {
        "-std=c99",
    });
    exe.addSourceFile("test.c");
    exe.addObject(obj);
    exe.setOutputPath(".");

    b.default_step.dependOn(&exe.step);
}

Terminal

$ zig build
$ ./test
all your base are belong to us

See also:

Targets

Zig supports generating code for all targets that LLVM supports. Here is what it looks like to execute zig targets on a Linux x86_64 computer:

$ zig targets
Architectures:
  armv8_2a
  armv8_1a
  armv8
  armv8r
  armv8m_baseline
  armv8m_mainline
  armv7
  armv7em
  armv7m
  armv7s
  armv7k
  armv7ve
  armv6
  armv6m
  armv6k
  armv6t2
  armv5
  armv5te
  armv4t
  armeb
  aarch64
  aarch64_be
  avr
  bpfel
  bpfeb
  hexagon
  mips
  mipsel
  mips64
  mips64el
  msp430
  nios2
  powerpc
  powerpc64
  powerpc64le
  r600
  amdgcn
  riscv32
  riscv64
  sparc
  sparcv9
  sparcel
  s390x
  tce
  tcele
  thumb
  thumbeb
  i386
  x86_64 (native)
  xcore
  nvptx
  nvptx64
  le32
  le64
  amdil
  amdil64
  hsail
  hsail64
  spir
  spir64
  kalimbav3
  kalimbav4
  kalimbav5
  shave
  lanai
  wasm32
  wasm64
  renderscript32
  renderscript64

Operating Systems:
  freestanding
  ananas
  cloudabi
  dragonfly
  freebsd
  fuchsia
  ios
  kfreebsd
  linux (native)
  lv2
  macosx
  netbsd
  openbsd
  solaris
  windows
  haiku
  minix
  rtems
  nacl
  cnk
  bitrig
  aix
  cuda
  nvcl
  amdhsa
  ps4
  elfiamcu
  tvos
  watchos
  mesa3d
  contiki
  zen

Environments:
  unknown
  gnu (native)
  gnuabi64
  gnueabi
  gnueabihf
  gnux32
  code16
  eabi
  eabihf
  android
  musl
  musleabi
  musleabihf
  msvc
  itanium
  cygnus
  amdopencl
  coreclr
  opencl

The Zig Standard Library (@import("std")) has architecture, environment, and operating sytsem abstractions, and thus takes additional work to support more platforms. It currently supports Linux x86_64. Not all standard library code requires operating system abstractions, however, so things such as generic data structures work an all above platforms.

Style Guide

These coding conventions are not enforced by the compiler, but they are shipped in this documentation along with the compiler in order to provide a point of reference, should anyone wish to point to an authority on agreed upon Zig coding style.

Whitespace

Names

Roughly speaking: camelCaseFunctionName, TitleCaseTypeName, snake_case_variable_name. More precisely:

Acronyms, initialisms, proper nouns, or any other word that has capitalization rules in written English are subject to naming conventions just like any other word. Even acronyms that are only 2 letters long are subject to these conventions.

These are general rules of thumb; if it makes sense to do something different, do what makes sense. For example, if there is an established convention such as ENOENT, follow the established convention.

Examples

const namespace_name = @import("dir_name/file_name.zig");
var global_var: i32 = undefined;
const const_name = 42;
const primitive_type_alias = f32;
const string_alias = []u8;

const StructName = struct {};
const StructAlias = StructName;

fn functionName(param_name: TypeName) void {
    var functionPointer = functionName;
    functionPointer();
    functionPointer = otherFunction;
    functionPointer();
}
const functionAlias = functionName;

fn ListTemplateFunction(comptime ChildType: type, comptime fixed_size: usize) type {
    return List(ChildType, fixed_size);
}

fn ShortList(comptime T: type, comptime n: usize) type {
    return struct {
        field_name: [n]T,
        fn methodName() void {}
    };
}

// The word XML loses its casing when used in Zig identifiers.
const xml_document =
    \\<?xml version="1.0" encoding="UTF-8"?>
    \\<document>
    \\</document>
;
const XmlParser = struct {};

// The initials BE (Big Endian) are just another word in Zig identifier names.
fn readU32Be() u32 {}

See the Zig Standard Library for more examples.

Source Encoding

Zig source code is encoded in UTF-8. An invalid UTF-8 byte sequence results in a compile error.

Throughout all zig source code (including in comments), some codepoints are never allowed:

The codepoint U+000a (LF) (which is encoded as the single-byte value 0x0a) is the line terminator character. This character always terminates a line of zig source code (except possbly the last line of the file).

For some discussion on the rationale behind these design decisions, see issue #663

Grammar

Root = many(TopLevelItem) EOF

TopLevelItem = CompTimeExpression(Block) | TopLevelDecl | TestDecl

TestDecl = "test" String Block

TopLevelDecl = option("pub") (FnDef | ExternDecl | GlobalVarDecl | UseDecl)

GlobalVarDecl = option("export") VariableDeclaration ";"

LocalVarDecl = option("comptime") VariableDeclaration

VariableDeclaration = ("var" | "const") Symbol option(":" TypeExpr) option("align" "(" Expression ")") option("section" "(" Expression ")") "=" Expression

ContainerMember = (ContainerField | FnDef | GlobalVarDecl)

ContainerField = Symbol option(":" PrefixOpExpression option("=" PrefixOpExpression ","

UseDecl = "use" Expression ";"

ExternDecl = "extern" option(String) (FnProto | VariableDeclaration) ";"

FnProto = option("nakedcc" | "stdcallcc" | "extern" | ("async" option("(" Expression ")"))) "fn" option(Symbol) ParamDeclList option("align" "(" Expression ")") option("section" "(" Expression ")") option("!") (TypeExpr | "var")

FnDef = option("inline" | "export") FnProto Block

ParamDeclList = "(" list(ParamDecl, ",") ")"

ParamDecl = option("noalias" | "comptime") option(Symbol ":") (TypeExpr | "var" | "...")

Block = option(Symbol ":") "{" many(Statement) "}"

Statement = LocalVarDecl ";" | Defer(Block) | Defer(Expression) ";" | BlockExpression(Block) | Expression ";" | ";"

TypeExpr = ErrorSetExpr

ErrorSetExpr = (PrefixOpExpression "!" PrefixOpExpression) | PrefixOpExpression

BlockOrExpression = Block | Expression

Expression = TryExpression | ReturnExpression | BreakExpression | AssignmentExpression | CancelExpression | ResumeExpression

AsmExpression = "asm" option("volatile") "(" String option(AsmOutput) ")"

AsmOutput = ":" list(AsmOutputItem, ",") option(AsmInput)

AsmInput = ":" list(AsmInputItem, ",") option(AsmClobbers)

AsmOutputItem = "[" Symbol "]" String "(" (Symbol | "->" TypeExpr) ")"

AsmInputItem = "[" Symbol "]" String "(" Expression ")"

AsmClobbers= ":" list(String, ",")

UnwrapExpression = BoolOrExpression (UnwrapNullable | UnwrapError) | BoolOrExpression

UnwrapNullable = "??" Expression

UnwrapError = "catch" option("|" Symbol "|") Expression

AssignmentExpression = UnwrapExpression AssignmentOperator UnwrapExpression | UnwrapExpression

AssignmentOperator = "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" | "^=" | "|=" | "*%=" | "+%=" | "-%="

BlockExpression(body) = Block | IfExpression(body) | IfErrorExpression(body) | TestExpression(body) | WhileExpression(body) | ForExpression(body) | SwitchExpression | CompTimeExpression(body) | SuspendExpression(body)

CompTimeExpression(body) = "comptime" body

SwitchExpression = "switch" "(" Expression ")" "{" many(SwitchProng) "}"

SwitchProng = (list(SwitchItem, ",") | "else") "=>" option("|" option("*") Symbol "|") Expression ","

SwitchItem = Expression | (Expression "..." Expression)

ForExpression(body) = option(Symbol ":") option("inline") "for" "(" Expression ")" option("|" option("*") Symbol option("," Symbol) "|") body option("else" BlockExpression(body))

BoolOrExpression = BoolAndExpression "or" BoolOrExpression | BoolAndExpression

ReturnExpression = "return" option(Expression)

TryExpression = "try" Expression

AwaitExpression = "await" Expression

BreakExpression = "break" option(":" Symbol) option(Expression)

CancelExpression = "cancel" Expression;

ResumeExpression = "resume" Expression;

Defer(body) = ("defer" | "deferror") body

IfExpression(body) = "if" "(" Expression ")" body option("else" BlockExpression(body))

SuspendExpression(body) = "suspend" option(("|" Symbol "|" body))

IfErrorExpression(body) = "if" "(" Expression ")" option("|" option("*") Symbol "|") body "else" "|" Symbol "|" BlockExpression(body)

TestExpression(body) = "if" "(" Expression ")" option("|" option("*") Symbol "|") body option("else" BlockExpression(body))

WhileExpression(body) = option(Symbol ":") option("inline") "while" "(" Expression ")" option("|" option("*") Symbol "|") option(":" "(" Expression ")") body option("else" option("|" Symbol "|") BlockExpression(body))

BoolAndExpression = ComparisonExpression "and" BoolAndExpression | ComparisonExpression

ComparisonExpression = BinaryOrExpression ComparisonOperator BinaryOrExpression | BinaryOrExpression

ComparisonOperator = "==" | "!=" | "<" | ">" | "<=" | ">="

BinaryOrExpression = BinaryXorExpression "|" BinaryOrExpression | BinaryXorExpression

BinaryXorExpression = BinaryAndExpression "^" BinaryXorExpression | BinaryAndExpression

BinaryAndExpression = BitShiftExpression "&" BinaryAndExpression | BitShiftExpression

BitShiftExpression = AdditionExpression BitShiftOperator BitShiftExpression | AdditionExpression

BitShiftOperator = "<<" | ">>" | "<<"

AdditionExpression = MultiplyExpression AdditionOperator AdditionExpression | MultiplyExpression

AdditionOperator = "+" | "-" | "++" | "+%" | "-%"

MultiplyExpression = CurlySuffixExpression MultiplyOperator MultiplyExpression | CurlySuffixExpression

CurlySuffixExpression = TypeExpr option(ContainerInitExpression)

MultiplyOperator = "||" | "*" | "/" | "%" | "**" | "*%"

PrefixOpExpression = PrefixOp ErrorSetExpr | SuffixOpExpression

SuffixOpExpression = ("async" option("(" Expression ")") PrimaryExpression FnCallExpression) | PrimaryExpression option(FnCallExpression | ArrayAccessExpression | FieldAccessExpression | SliceExpression)

FieldAccessExpression = "." Symbol

FnCallExpression = "(" list(Expression, ",") ")"

ArrayAccessExpression = "[" Expression "]"

SliceExpression = "[" Expression ".." option(Expression) "]"

ContainerInitExpression = "{" ContainerInitBody "}"

ContainerInitBody = list(StructLiteralField, ",") | list(Expression, ",")

StructLiteralField = "." Symbol "=" Expression

PrefixOp = "!" | "-" | "~" | "*" | ("&" option("align" "(" Expression option(":" Integer ":" Integer) ")" ) option("const") option("volatile")) | "?" | "??" | "-%" | "try" | "await"

PrimaryExpression = Integer | Float | String | CharLiteral | KeywordLiteral | GroupedExpression | BlockExpression(BlockOrExpression) | Symbol | ("@" Symbol FnCallExpression) | ArrayType | FnProto | AsmExpression | ContainerDecl | ("continue" option(":" Symbol)) | ErrorSetDecl

ArrayType : "[" option(Expression) "]" option("align" "(" Expression option(":" Integer ":" Integer) ")")) option("const") option("volatile") TypeExpr

GroupedExpression = "(" Expression ")"

KeywordLiteral = "true" | "false" | "null" | "undefined" | "error" | "this" | "unreachable" | "suspend"

ErrorSetDecl = "error" "{" list(Symbol, ",") "}"

ContainerDecl = option("extern" | "packed")
  ("struct" option(GroupedExpression) | "union" option("enum" option(GroupedExpression) | GroupedExpression) | ("enum" option(GroupedExpression)))
  "{" many(ContainerMember) "}"

Zen