Zig Language Reference

Introduction §

Zig is a general-purpose programming language and toolchain for maintaining robust, optimal, and reusable software.

Robust
Behavior is correct even for edge cases such as out of memory.
Optimal
Write programs the best way they can behave and perform.
Reusable
The same code works in many environments which have different constraints.
Maintainable
Precisely communicate intent to the compiler and other programmers. The language imposes a low overhead to reading code and is resilient to changing requirements and environments.

Often the most efficient way to learn something new is to see examples, so this documentation shows how to use each of Zig's features. It is all on one page so you can search with your browser's search tool.

The code samples in this document are compiled and tested as part of the main test suite of Zig.

This HTML document depends on no external files, so you can use it offline.

Zig Standard Library §

The Zig Standard Library has its own documentation.

Zig's Standard Library contains commonly used algorithms, data structures, and definitions to help you build programs or libraries. You will see many examples of Zig's Standard Library used in this documentation. To learn more about the Zig Standard Library, visit the link above.

Hello World §

hello.zig
const std = @import("std");

pub fn main() !void {
    const stdout = std.io.getStdOut().writer();
    try stdout.print("Hello, {s}!\n", .{"world"});
}
Shell
$ zig build-exe hello.zig
$ ./hello
Hello, world!

Most of the time, it is more appropriate to write to stderr rather than stdout, and whether or not the message is successfully written to the stream is irrelevant. For this common case, there is a simpler API:

hello_again.zig
const std = @import("std");

pub fn main() void {
    std.debug.print("Hello, world!\n", .{});
}
Shell
$ zig build-exe hello_again.zig
$ ./hello_again
Hello, world!

In this case, the ! may be omitted from the return type because no errors are returned from the function.

See also:

Comments §

Zig supports 3 types of comments. Normal comments are ignored, but doc comments and top-level doc comments are used by the compiler to generate the package documentation.

The generated documentation is still experimental, and can be produced with:

Shell
zig test -femit-docs main.zig
comments.zig
const print = @import("std").debug.print;

pub fn main() void {
    // Comments in Zig start with "//" and end at the next LF byte (end of line).
    // The line below is a comment and won't be executed.

    //print("Hello?", .{});

    print("Hello, world!\n", .{}); // another comment
}
Shell
$ zig build-exe comments.zig
$ ./comments
Hello, world!

There are no multiline comments in Zig (e.g. like /* */ comments in C). This allows Zig to have the property that each line of code can be tokenized out of context.

Doc Comments §

A doc comment is one that begins with exactly three slashes (i.e. /// but not ////); multiple doc comments in a row are merged together to form a multiline doc comment. The doc comment documents whatever immediately follows it.

doc_comments.zig
/// A structure for storing a timestamp, with nanosecond precision (this is a
/// multiline doc comment).
const Timestamp = struct {
    /// The number of seconds since the epoch (this is also a doc comment).
    seconds: i64,  // signed so we can represent pre-1970 (not a doc comment)
    /// The number of nanoseconds past the second (doc comment again).
    nanos: u32,

    /// Returns a `Timestamp` struct representing the Unix epoch; that is, the
    /// moment of 1970 Jan 1 00:00:00 UTC (this is a doc comment too).
    pub fn unixEpoch() Timestamp {
        return Timestamp{
            .seconds = 0,
            .nanos = 0,
        };
    }
};

Doc comments are only allowed in certain places; it is a compile error to have a doc comment in an unexpected place, such as in the middle of an expression, or just before a non-doc comment.

invalid_doc-comment.zig
/// doc-comment
//! top-level doc-comment
const std = @import("std");
Shell
$ zig build-obj invalid_doc-comment.zig
docgen_tmp/invalid_doc-comment.zig:1:16: error: expected type expression, found 'a document comment'
/// doc-comment
               ^

unattached_doc-comment.zig
pub fn main() void {}

/// End of file
Shell
$ zig build-obj unattached_doc-comment.zig
docgen_tmp/unattached_doc-comment.zig:3:1: error: unattached documentation comment
/// End of file
^~~~~~~~~~~~~~~

Doc comments can be interleaved with normal comments. Currently, when producing the package documentation, normal comments are merged with doc comments.

Top-Level Doc Comments §

A top-level doc comment is one that begins with two slashes and an exclamation point: //!; it documents the current module.

It is a compile error if a top-level doc comment is not placed at the start of a container, before any expressions.

tldoc_comments.zig
//! This module provides functions for retrieving the current date and
//! time with varying degrees of precision and accuracy. It does not
//! depend on libc, but will use functions from it if available.

const S = struct {
    //! Top level comments are allowed inside a container other than a module,
    //! but it is not very useful.  Currently, when producing the package
    //! documentation, these comments are ignored.
};

Values §

values.zig
// Top-level declarations are order-independent:
const print = std.debug.print;
const std = @import("std");
const os = std.os;
const assert = std.debug.assert;

pub fn main() void {
    // integers
    const one_plus_one: i32 = 1 + 1;
    print("1 + 1 = {}\n", .{one_plus_one});

    // floats
    const seven_div_three: f32 = 7.0 / 3.0;
    print("7.0 / 3.0 = {}\n", .{seven_div_three});

    // boolean
    print("{}\n{}\n{}\n", .{
        true and false,
        true or false,
        !true,
    });

    // optional
    var optional_value: ?[]const u8 = null;
    assert(optional_value == null);

    print("\noptional 1\ntype: {}\nvalue: {?s}\n", .{
        @TypeOf(optional_value), optional_value,
    });

    optional_value = "hi";
    assert(optional_value != null);

    print("\noptional 2\ntype: {}\nvalue: {?s}\n", .{
        @TypeOf(optional_value), optional_value,
    });

    // error union
    var number_or_error: anyerror!i32 = error.ArgNotFound;

    print("\nerror union 1\ntype: {}\nvalue: {!}\n", .{
        @TypeOf(number_or_error), number_or_error, });

    number_or_error = 1234;

    print("\nerror union 2\ntype: {}\nvalue: {!}\n", .{
        @TypeOf(number_or_error), number_or_error,
    });
}
Shell
$ zig build-exe values.zig
$ ./values
1 + 1 = 2
7.0 / 3.0 = 2.3333333e0
false
true
false

optional 1
type: ?[]const u8
value: null

optional 2
type: ?[]const u8
value: hi

error union 1
type: anyerror!i32
value: error.ArgNotFound

error union 2
type: anyerror!i32
value: 1234

Primitive Types §

Primitive Types
Type C Equivalent Description
i8 int8_t signed 8-bit integer
u8 uint8_t unsigned 8-bit integer
i16 int16_t signed 16-bit integer
u16 uint16_t unsigned 16-bit integer
i32 int32_t signed 32-bit integer
u32 uint32_t unsigned 32-bit integer
i64 int64_t signed 64-bit integer
u64 uint64_t unsigned 64-bit integer
i128 __int128 signed 128-bit integer
u128 unsigned __int128 unsigned 128-bit integer
isize intptr_t signed pointer sized integer
usize uintptr_t, size_t unsigned pointer sized integer. Also see #5185
c_char char for ABI compatibility with C
c_short short for ABI compatibility with C
c_ushort unsigned short for ABI compatibility with C
c_int int for ABI compatibility with C
c_uint unsigned int for ABI compatibility with C
c_long long for ABI compatibility with C
c_ulong unsigned long for ABI compatibility with C
c_longlong long long for ABI compatibility with C
c_ulonglong unsigned long long for ABI compatibility with C
c_longdouble long double for ABI compatibility with C
f16 _Float16 16-bit floating point (10-bit mantissa) IEEE-754-2008 binary16
f32 float 32-bit floating point (23-bit mantissa) IEEE-754-2008 binary32
f64 double 64-bit floating point (52-bit mantissa) IEEE-754-2008 binary64
f80 double 80-bit floating point (64-bit mantissa) IEEE-754-2008 80-bit extended precision
f128 _Float128 128-bit floating point (112-bit mantissa) IEEE-754-2008 binary128
bool bool true or false
anyopaque void Used for type-erased pointers.
void (none) Always the value void{}
noreturn (none) the type of break, continue, return, unreachable, and while (true) {}
type (none) the type of types
anyerror (none) an error code
comptime_int (none) Only allowed for comptime-known values. The type of integer literals.
comptime_float (none) Only allowed for comptime-known values. The type of float literals.

In addition to the integer types above, arbitrary bit-width integers can be referenced by using an identifier of i or u followed by digits. For example, the identifier i7 refers to a signed 7-bit integer. The maximum allowed bit-width of an integer type is 65535.

See also:

Primitive Values §

Primitive Values
Name Description
true and false bool values
null used to set an optional type to null
undefined used to leave a value unspecified

See also:

String Literals and Unicode Code Point Literals §

String literals are constant single-item Pointers to null-terminated byte arrays. The type of string literals encodes both the length, and the fact that they are null-terminated, and thus they can be coerced to both Slices and Null-Terminated Pointers. Dereferencing string literals converts them to Arrays.

Because Zig source code is UTF-8 encoded, any non-ASCII bytes appearing within a string literal in source code carry their UTF-8 meaning into the content of the string in the Zig program; the bytes are not modified by the compiler. It is possible to embed non-UTF-8 bytes into a string literal using \xNN notation.

Indexing into a string containing non-ASCII bytes returns individual bytes, whether valid UTF-8 or not.

Unicode code point literals have type comptime_int, the same as Integer Literals. All Escape Sequences are valid in both string literals and Unicode code point literals.

string_literals.zig
const print = @import("std").debug.print;
const mem = @import("std").mem; // will be used to compare bytes

pub fn main() void {
    const bytes = "hello";
    print("{}\n", .{@TypeOf(bytes)});                   // *const [5:0]u8
    print("{d}\n", .{bytes.len});                       // 5
    print("{c}\n", .{bytes[1]});                        // 'e'
    print("{d}\n", .{bytes[5]});                        // 0
    print("{}\n", .{'e' == '\x65'});                    // true
    print("{d}\n", .{'\u{1f4a9}'});                     // 128169
    print("{d}\n", .{'💯'});                            // 128175
    print("{u}\n", .{'⚡'});
    print("{}\n", .{mem.eql(u8, "hello", "h\x65llo")});      // true
    print("{}\n", .{mem.eql(u8, "💯", "\xf0\x9f\x92\xaf")}); // also true
    const invalid_utf8 = "\xff\xfe";      // non-UTF-8 strings are possible with \xNN notation.
    print("0x{x}\n", .{invalid_utf8[1]}); // indexing them returns individual bytes...
    print("0x{x}\n", .{"💯"[1]});    // ...as does indexing part-way through non-ASCII characters
}
Shell
$ zig build-exe string_literals.zig
$ ./string_literals
*const [5:0]u8
5
e
0
true
128169
128175
⚡
true
true
0xfe
0x9f

See also:

Escape Sequences §

Escape Sequences
Escape Sequence Name
\n Newline
\r Carriage Return
\t Tab
\\ Backslash
\' Single Quote
\" Double Quote
\xNN hexadecimal 8-bit byte value (2 digits)
\u{NNNNNN} hexadecimal Unicode code point UTF-8 encoded (1 or more digits)

Note that the maximum valid Unicode point is 0x10ffff.

Multiline String Literals §

Multiline string literals have no escapes and can span across multiple lines. To start a multiline string literal, use the \\ token. Just like a comment, the string literal goes until the end of the line. The end of the line is not included in the string literal. However, if the next line begins with \\ then a newline is appended and the string literal continues.

multiline_string_literals.zig
const hello_world_in_c =
    \\#include <stdio.h>
    \\
    \\int main(int argc, char **argv) {
    \\    printf("hello world\n");
    \\    return 0;
    \\}
;

See also:

Assignment §

Use the const keyword to assign a value to an identifier:

constant_identifier_cannot_change.zig
const x = 1234;

fn foo() void {
    // It works at file scope as well as inside functions.
    const y = 5678;

    // Once assigned, an identifier cannot be changed.
    y += 1;
}

pub fn main() void {
    foo();
}
Shell
$ zig build-exe constant_identifier_cannot_change.zig
constant_identifier_cannot_change.zig:8:7: error: cannot assign to constant
    y += 1;
    ~~^~~~
referenced by:
    main: constant_identifier_cannot_change.zig:12:5
    callMain: /home/andy/src/zig-0.12.x/lib/std/start.zig:501:17
    remaining reference traces hidden; use '-freference-trace' to see all reference traces

const applies to all of the bytes that the identifier immediately addresses. Pointers have their own const-ness.

If you need a variable that you can modify, use the var keyword:

mutable_var.zig
const print = @import("std").debug.print;

pub fn main() void {
    var y: i32 = 5678;

    y += 1;

    print("{d}", .{y});
}
Shell
$ zig build-exe mutable_var.zig
$ ./mutable_var
5679

Variables must be initialized:

var_must_be_initialized.zig
pub fn main() void {
    var x: i32;

    x = 1;
}
Shell
$ zig build-exe var_must_be_initialized.zig
var_must_be_initialized.zig:2:15: error: expected '=', found ';'
    var x: i32;
              ^

undefined §

Use undefined to leave variables uninitialized:

assign_undefined.zig
const print = @import("std").debug.print;

pub fn main() void {
    var x: i32 = undefined;
    x = 1;
    print("{d}", .{x});
}
Shell
$ zig build-exe assign_undefined.zig
$ ./assign_undefined
1

undefined can be coerced to any type. Once this happens, it is no longer possible to detect that the value is undefined. undefined means the value could be anything, even something that is nonsense according to the type. Translated into English, undefined means "Not a meaningful value. Using this value would be a bug. The value will be unused, or overwritten before being used."

In Debug mode, Zig writes 0xaa bytes to undefined memory. This is to catch bugs early, and to help detect use of undefined memory in a debugger. However, this behavior is only an implementation feature, not a language semantic, so it is not guaranteed to be observable to code.

Zig Test §

Code written within one or more test declarations can be used to ensure behavior meets expectations:

testing_introduction.zig
const std = @import("std");

test "expect addOne adds one to 41" {

    // The Standard Library contains useful functions to help create tests.
    // `expect` is a function that verifies its argument is true.
    // It will return an error if its argument is false to indicate a failure.
    // `try` is used to return an error to the test runner to notify it that the test failed.
    try std.testing.expect(addOne(41) == 42);
}

test addOne {
    // A test name can also be written using an identifier.
    // This is a doctest, and serves as documentation for `addOne`.
    try std.testing.expect(addOne(41) == 42);
}

/// The function `addOne` adds one to the number given as its argument.
fn addOne(number: i32) i32 {
    return number + 1;
}
Shell
$ zig test testing_introduction.zig
1/2 testing_introduction.test.expect addOne adds one to 41... OK
2/2 testing_introduction.decltest.addOne... OK
All 2 tests passed.

The testing_introduction.zig code sample tests the function addOne to ensure that it returns 42 given the input 41. From this test's perspective, the addOne function is said to be code under test.

zig test is a tool that creates and runs a test build. By default, it builds and runs an executable program using the default test runner provided by the Zig Standard Library as its main entry point. During the build, test declarations found while resolving the given Zig source file are included for the default test runner to run and report on.

The shell output shown above displays two lines after the zig test command. These lines are printed to standard error by the default test runner:

1/2 testing_introduction.test.expect addOne adds one to 41...
Lines like this indicate which test, out of the total number of tests, is being run. In this case, 1/2 indicates that the first test, out of a total of two tests, is being run. Note that, when the test runner program's standard error is output to the terminal, these lines are cleared when a test succeeds.
2/2 testing_introduction.decltest.addOne...
When the test name is an identifier, the default test runner uses the text decltest instead of test.
All 2 tests passed.
This line indicates the total number of tests that have passed.

Test Declarations §

Test declarations contain the keyword test, followed by an optional name written as a string literal or an identifier, followed by a block containing any valid Zig code that is allowed in a function.

Non-named test blocks always run during test builds and are exempt from Skip Tests.

Test declarations are similar to Functions: they have a return type and a block of code. The implicit return type of test is the Error Union Type anyerror!void, and it cannot be changed. When a Zig source file is not built using the zig test tool, the test declarations are omitted from the build.

Test declarations can be written in the same file, where code under test is written, or in a separate Zig source file. Since test declarations are top-level declarations, they are order-independent and can be written before or after the code under test.

See also:

Doctests §

Test declarations named using an identifier are doctests. The identifier must refer to another declaration in scope. A doctest, like a doc comment, serves as documentation for the associated declaration, and will appear in the generated documentation for the declaration.

An effective doctest should be self-contained and focused on the declaration being tested, answering questions a new user might have about its interface or intended usage, while avoiding unnecessary or confusing details. A doctest is not a substitute for a doc comment, but rather a supplement and companion providing a testable, code-driven example, verified by zig test.

Test Failure §

The default test runner checks for an error returned from a test. When a test returns an error, the test is considered a failure and its error return trace is output to standard error. The total number of failures will be reported after all tests have run.

testing_failure.zig
const std = @import("std");

test "expect this to fail" {
    try std.testing.expect(false);
}

test "expect this to succeed" {
    try std.testing.expect(true);
}
Shell
$ zig test testing_failure.zig
1/2 testing_failure.test.expect this to fail... FAIL (TestUnexpectedResult)
/home/andy/src/zig-0.12.x/lib/std/testing.zig:540:14: 0x1038fcf in expect (test)
    if (!ok) return error.TestUnexpectedResult;
             ^
/home/andy/src/zig-0.12.x/docgen_tmp/testing_failure.zig:4:5: 0x10390e5 in test.expect this to fail (test)
    try std.testing.expect(false);
    ^
2/2 testing_failure.test.expect this to succeed... OK
1 passed; 0 skipped; 1 failed.
error: the following test command failed with exit code 1:
/home/andy/src/zig-0.12.x/zig-cache/o/a8d5acbde1a3053d7933a5909ebaa4f6/test

Skip Tests §

One way to skip tests is to filter them out by using the zig test command line parameter --test-filter [text]. This makes the test build only include tests whose name contains the supplied filter text. Note that non-named tests are run even when using the --test-filter [text] command line parameter.

To programmatically skip a test, make a test return the error error.SkipZigTest and the default test runner will consider the test as being skipped. The total number of skipped tests will be reported after all tests have run.

testing_skip.zig
test "this will be skipped" {
    return error.SkipZigTest;
}
Shell
$ zig test testing_skip.zig
1/1 testing_skip.test.this will be skipped... SKIP
0 passed; 1 skipped; 0 failed.

Report Memory Leaks §

When code allocates Memory using the Zig Standard Library's testing allocator, std.testing.allocator, the default test runner will report any leaks that are found from using the testing allocator:

testing_detect_leak.zig
const std = @import("std");

test "detect leak" {
    var list = std.ArrayList(u21).init(std.testing.allocator);
    // missing `defer list.deinit();`
    try list.append('☔');

    try std.testing.expect(list.items.len == 1);
}
Shell
$ zig test testing_detect_leak.zig
1/1 testing_detect_leak.test.detect leak... OK
[gpa] (err): memory address 0x7f3d6469a000 leaked:
/home/andy/src/zig-0.12.x/lib/std/array_list.zig:457:67: 0x104b8ee in ensureTotalCapacityPrecise (test)
                const new_memory = try self.allocator.alignedAlloc(T, alignment, new_capacity);
                                                                  ^
/home/andy/src/zig-0.12.x/lib/std/array_list.zig:434:51: 0x1041820 in ensureTotalCapacity (test)
            return self.ensureTotalCapacityPrecise(better_capacity);
                                                  ^
/home/andy/src/zig-0.12.x/lib/std/array_list.zig:483:41: 0x103e210 in addOne (test)
            try self.ensureTotalCapacity(newlen);
                                        ^
/home/andy/src/zig-0.12.x/lib/std/array_list.zig:262:49: 0x103b14d in append (test)
            const new_item_ptr = try self.addOne();
                                                ^
/home/andy/src/zig-0.12.x/docgen_tmp/testing_detect_leak.zig:6:20: 0x1039352 in test.detect leak (test)
    try list.append('☔');
                   ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:158:25: 0x104896d in mainTerminal (test)
        if (test_fn.func()) |_| {
                        ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:35:28: 0x103eaeb in main (test)
        return mainTerminal();
                           ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x103b649 in posixCallMainAndExit (test)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x103b1b1 in _start (test)
    asm volatile (switch (native_arch) {
    ^

All 1 tests passed.
1 errors were logged.
1 tests leaked memory.
error: the following test command failed with exit code 1:
/home/andy/src/zig-0.12.x/zig-cache/o/8b45cfcd70e8f2830d9a74a344c3c670/test

See also:

Detecting Test Build §

Use the compile variable @import("builtin").is_test to detect a test build:

testing_detect_test.zig
const std = @import("std");
const builtin = @import("builtin");
const expect = std.testing.expect;

test "builtin.is_test" {
    try expect(isATest());
}

fn isATest() bool {
    return builtin.is_test;
}
Shell
$ zig test testing_detect_test.zig
1/1 testing_detect_test.test.builtin.is_test... OK
All 1 tests passed.

Test Output and Logging §

The default test runner and the Zig Standard Library's testing namespace output messages to standard error.

The Testing Namespace §

The Zig Standard Library's testing namespace contains useful functions to help you create tests. In addition to the expect function, this document uses a couple of more functions as exemplified here:

testing_namespace.zig
const std = @import("std");

test "expectEqual demo" {
    const expected: i32 = 42;
    const actual = 42;

    // The first argument to `expectEqual` is the known, expected, result.
    // The second argument is the result of some expression.
    // The actual's type is casted to the type of expected.
    try std.testing.expectEqual(expected, actual);
}

test "expectError demo" {
    const expected_error = error.DemoError;
    const actual_error_union: anyerror!void = error.DemoError;

    // `expectError` will fail when the actual error is different than
    // the expected error.
    try std.testing.expectError(expected_error, actual_error_union);
}
Shell
$ zig test testing_namespace.zig
1/2 testing_namespace.test.expectEqual demo... OK
2/2 testing_namespace.test.expectError demo... OK
All 2 tests passed.

The Zig Standard Library also contains functions to compare Slices, strings, and more. See the rest of the std.testing namespace in the Zig Standard Library for more available functions.

Test Tool Documentation §

zig test has a few command line parameters which affect the compilation. See zig test --help for a full list.

Variables §

A variable is a unit of Memory storage.

It is generally preferable to use const rather than var when declaring a variable. This causes less work for both humans and computers to do when reading code, and creates more optimization opportunities.

The extern keyword or @extern builtin function can be used to link against a variable that is exported from another object. The export keyword or @export builtin function can be used to make a variable available to other objects at link time. In both cases, the type of the variable must be C ABI compatible.

See also:

Identifiers §

Variable identifiers are never allowed to shadow identifiers from an outer scope.

Identifiers must start with an alphabetic character or underscore and may be followed by any number of alphanumeric characters or underscores. They must not overlap with any keywords. See Keyword Reference.

If a name that does not fit these requirements is needed, such as for linking with external libraries, the @"" syntax may be used.

identifiers.zig
const @"identifier with spaces in it" = 0xff;
const @"1SmallStep4Man" = 112358;

const c = @import("std").c;
pub extern "c" fn @"error"() void;
pub extern "c" fn @"fstat$INODE64"(fd: c.fd_t, buf: *c.Stat) c_int;

const Color = enum {
  red,
  @"really red",
};
const color: Color = .@"really red";

Container Level Variables §

Container level variables have static lifetime and are order-independent and lazily analyzed. The initialization value of container level variables is implicitly comptime. If a container level variable is const then its value is comptime-known, otherwise it is runtime-known.

test_container_level_variables.zig
var y: i32 = add(10, x);
const x: i32 = add(12, 34);

test "container level variables" {
    try expect(x == 46);
    try expect(y == 56);
}

fn add(a: i32, b: i32) i32 {
    return a + b;
}

const std = @import("std");
const expect = std.testing.expect;
Shell
$ zig test test_container_level_variables.zig
1/1 test_container_level_variables.test.container level variables... OK
All 1 tests passed.

Container level variables may be declared inside a struct, union, enum, or opaque:

test_namespaced_container_level_variable.zig
const std = @import("std");
const expect = std.testing.expect;

test "namespaced container level variable" {
    try expect(foo() == 1235);
    try expect(foo() == 1236);
}

const S = struct {
    var x: i32 = 1234;
};

fn foo() i32 {
    S.x += 1;
    return S.x;
}
Shell
$ zig test test_namespaced_container_level_variable.zig
1/1 test_namespaced_container_level_variable.test.namespaced container level variable... OK
All 1 tests passed.

Static Local Variables §

It is also possible to have local variables with static lifetime by using containers inside functions.

test_static_local_variable.zig
const std = @import("std");
const expect = std.testing.expect;

test "static local variable" {
    try expect(foo() == 1235);
    try expect(foo() == 1236);
}

fn foo() i32 {
    const S = struct {
        var x: i32 = 1234;
    };
    S.x += 1;
    return S.x;
}
Shell
$ zig test test_static_local_variable.zig
1/1 test_static_local_variable.test.static local variable... OK
All 1 tests passed.

Thread Local Variables §

A variable may be specified to be a thread-local variable using the threadlocal keyword, which makes each thread work with a separate instance of the variable:

test_thread_local_variables.zig
const std = @import("std");
const assert = std.debug.assert;

threadlocal var x: i32 = 1234;

test "thread local storage" {
    const thread1 = try std.Thread.spawn(.{}, testTls, .{});
    const thread2 = try std.Thread.spawn(.{}, testTls, .{});
    testTls();
    thread1.join();
    thread2.join();
}

fn testTls() void {
    assert(x == 1234);
    x += 1;
    assert(x == 1235);
}
Shell
$ zig test test_thread_local_variables.zig
1/1 test_thread_local_variables.test.thread local storage... OK
All 1 tests passed.

For Single Threaded Builds, all thread local variables are treated as regular Container Level Variables.

Thread local variables may not be const.

Local Variables §

Local variables occur inside Functions, comptime blocks, and @cImport blocks.

When a local variable is const, it means that after initialization, the variable's value will not change. If the initialization value of a const variable is comptime-known, then the variable is also comptime-known.

A local variable may be qualified with the comptime keyword. This causes the variable's value to be comptime-known, and all loads and stores of the variable to happen during semantic analysis of the program, rather than at runtime. All variables declared in a comptime expression are implicitly comptime variables.

test_comptime_variables.zig
const std = @import("std");
const expect = std.testing.expect;

test "comptime vars" {
    var x: i32 = 1;
    comptime var y: i32 = 1;

    x += 1;
    y += 1;

    try expect(x == 2);
    try expect(y == 2);

    if (y != 2) {
        // This compile error never triggers because y is a comptime variable,
        // and so `y != 2` is a comptime value, and this if is statically evaluated.
        @compileError("wrong y value");
    }
}
Shell
$ zig test test_comptime_variables.zig
1/1 test_comptime_variables.test.comptime vars... OK
All 1 tests passed.

Integers §

Integer Literals §

integer_literals.zig
const decimal_int = 98222;
const hex_int = 0xff;
const another_hex_int = 0xFF;
const octal_int = 0o755;
const binary_int = 0b11110000;

// underscores may be placed between two digits as a visual separator
const one_billion = 1_000_000_000;
const binary_mask = 0b1_1111_1111;
const permissions = 0o7_5_5;
const big_address = 0xFF80_0000_0000_0000;

Runtime Integer Values §

Integer literals have no size limitation, and if any undefined behavior occurs, the compiler catches it.

However, once an integer value is no longer known at compile-time, it must have a known size, and is vulnerable to undefined behavior.

runtime_vs_comptime.zig
fn divide(a: i32, b: i32) i32 {
    return a / b;
}

In this function, values a and b are known only at runtime, and thus this division operation is vulnerable to both Integer Overflow and Division by Zero.

Operators such as + and - cause undefined behavior on integer overflow. Alternative operators are provided for wrapping and saturating arithmetic on all targets. +% and -% perform wrapping arithmetic while +| and -| perform saturating arithmetic.

Zig supports arbitrary bit-width integers, referenced by using an identifier of i or u followed by digits. For example, the identifier i7 refers to a signed 7-bit integer. The maximum allowed bit-width of an integer type is 65535. For signed integer types, Zig uses a two's complement representation.

See also:

Floats §

Zig has the following floating point types:

  • f16 - IEEE-754-2008 binary16
  • f32 - IEEE-754-2008 binary32
  • f64 - IEEE-754-2008 binary64
  • f80 - IEEE-754-2008 80-bit extended precision
  • f128 - IEEE-754-2008 binary128
  • c_longdouble - matches long double for the target C ABI

Float Literals §

Float literals have type comptime_float which is guaranteed to have the same precision and operations of the largest other floating point type, which is f128.

Float literals coerce to any floating point type, and to any integer type when there is no fractional component.

float_literals.zig
const floating_point = 123.0E+77;
const another_float = 123.0;
const yet_another = 123.0e+77;

const hex_floating_point = 0x103.70p-5;
const another_hex_float = 0x103.70;
const yet_another_hex_float = 0x103.70P-5;

// underscores may be placed between two digits as a visual separator
const lightspeed = 299_792_458.000_000;
const nanosecond = 0.000_000_001;
const more_hex = 0x1234_5678.9ABC_CDEFp-10;

There is no syntax for NaN, infinity, or negative infinity. For these special values, one must use the standard library:

float_special_values.zig
const std = @import("std");

const inf = std.math.inf(f32);
const negative_inf = -std.math.inf(f64);
const nan = std.math.nan(f128);

Floating Point Operations §

By default floating point operations use Strict mode, but you can switch to Optimized mode on a per-block basis:

float_mode_obj.zig
const std = @import("std");
const big = @as(f64, 1 << 40);

export fn foo_strict(x: f64) f64 {
    return x + big - big;
}

export fn foo_optimized(x: f64) f64 {
    @setFloatMode(.optimized);
    return x + big - big;
}
Shell
$ zig build-obj float_mode_obj.zig -O ReleaseFast

For this test we have to separate code into two object files - otherwise the optimizer figures out all the values at compile-time, which operates in strict mode.

float_mode_exe.zig
const print = @import("std").debug.print;

extern fn foo_strict(x: f64) f64;
extern fn foo_optimized(x: f64) f64;

pub fn main() void {
    const x = 0.001;
    print("optimized = {}\n", .{foo_optimized(x)});
    print("strict = {}\n", .{foo_strict(x)});
}
Shell
$ zig build-exe float_mode_exe.zig float_mode_obj.o
$ ./float_mode_exe
optimized = 1e-3
strict = 9.765625e-4

See also:

Operators §

There is no operator overloading. When you see an operator in Zig, you know that it is doing something from this table, and nothing else.

Table of Operators §

Name Syntax Types Remarks Example
Addition
a + b
a += b
2 + 5 == 7
Wrapping Addition
a +% b
a +%= b
@as(u32, 0xffffffff) +% 1 == 0
Saturating Addition
a +| b
a +|= b
@as(u8, 255) +| 1 == @as(u8, 255)
Subtraction
a - b
a -= b
2 - 5 == -3
Wrapping Subtraction
a -% b
a -%= b
@as(u8, 0) -% 1 == 255
Saturating Subtraction
a -| b
a -|= b
@as(u32, 0) -| 1 == 0
Negation
-a
-1 == 0 - 1
Wrapping Negation
-%a
  • Twos-complement wrapping behavior.
-%@as(i8, -128) == -128
Multiplication
a * b
a *= b
2 * 5 == 10
Wrapping Multiplication
a *% b
a *%= b
@as(u8, 200) *% 2 == 144
Saturating Multiplication
a *| b
a *|= b
@as(u8, 200) *| 2 == 255
Division
a / b
a /= b
10 / 5 == 2
Remainder Division
a % b
a %= b
10 % 3 == 1
Bit Shift Left
a << b
a <<= b
  • Moves all bits to the left, inserting new zeroes at the least-significant bit.
  • b must be comptime-known or have a type with log2 number of bits as a.
  • See also @shlExact.
  • See also @shlWithOverflow.
0b1 << 8 == 0b100000000
Saturating Bit Shift Left
a <<| b
a <<|= b
@as(u8, 1) <<| 8 == 255
Bit Shift Right
a >> b
a >>= b
  • Moves all bits to the right, inserting zeroes at the most-significant bit.
  • b must be comptime-known or have a type with log2 number of bits as a.
  • See also @shrExact.
0b1010 >> 1 == 0b101
Bitwise And
a & b
a &= b
0b011 & 0b101 == 0b001
Bitwise Or
a | b
a |= b
0b010 | 0b100 == 0b110
Bitwise Xor
a ^ b
a ^= b
0b011 ^ 0b101 == 0b110
Bitwise Not
~a
~@as(u8, 0b10101111) == 0b01010000
Defaulting Optional Unwrap
a orelse b
If a is null, returns b ("default value"), otherwise returns the unwrapped value of a. Note that b may be a value of type noreturn.
const value: ?u32 = null;
const unwrapped = value orelse 1234;
unwrapped == 1234
Optional Unwrap
a.?
Equivalent to:
a orelse unreachable
const value: ?u32 = 5678;
value.? == 5678
Defaulting Error Unwrap
a catch b
a catch |err| b
If a is an error, returns b ("default value"), otherwise returns the unwrapped value of a. Note that b may be a value of type noreturn. err is the error and is in scope of the expression b.
const value: anyerror!u32 = error.Broken;
const unwrapped = value catch 1234;
unwrapped == 1234
Logical And
a and b
If a is false, returns false without evaluating b. Otherwise, returns b.
(false and true) == false
Logical Or
a or b
If a is true, returns true without evaluating b. Otherwise, returns b.
(false or true) == true
Boolean Not
!a
!false == true
Equality
a == b
Returns true if a and b are equal, otherwise returns false. Invokes Peer Type Resolution for the operands.
(1 == 1) == true
Null Check
a == null
Returns true if a is null, otherwise returns false.
const value: ?u32 = null;
(value == null) == true
Inequality
a != b
Returns false if a and b are equal, otherwise returns true. Invokes Peer Type Resolution for the operands.
(1 != 1) == false
Non-Null Check
a != null
Returns false if a is null, otherwise returns true.
const value: ?u32 = null;
(value != null) == false
Greater Than
a > b
Returns true if a is greater than b, otherwise returns false. Invokes Peer Type Resolution for the operands.
(2 > 1) == true
Greater or Equal
a >= b
Returns true if a is greater than or equal to b, otherwise returns false. Invokes Peer Type Resolution for the operands.
(2 >= 1) == true
Less Than
a < b
Returns true if a is less than b, otherwise returns false. Invokes Peer Type Resolution for the operands.
(1 < 2) == true
Lesser or Equal
a <= b
Returns true if a is less than or equal to b, otherwise returns false. Invokes Peer Type Resolution for the operands.
(1 <= 2) == true
Array Concatenation
a ++ b
const mem = @import("std").mem;
const array1 = [_]u32{1,2};
const array2 = [_]u32{3,4};
const together = array1 ++ array2;
mem.eql(u32, &together, &[_]u32{1,2,3,4})
Array Multiplication
a ** b
const mem = @import("std").mem;
const pattern = "ab" ** 3;
mem.eql(u8, pattern, "ababab")
Pointer Dereference
a.*
Pointer dereference.
const x: u32 = 1234;
const ptr = &x;
ptr.* == 1234
Address Of
&a
All types
const x: u32 = 1234;
const ptr = &x;
ptr.* == 1234
Error Set Merge
a || b
Merging Error Sets
const A = error{One};
const B = error{Two};
(A || B) == error{One, Two}

Precedence §

x() x[] x.y x.* x.?
a!b
x{}
!x -x -%x ~x &x ?x
* / % ** *% *| ||
+ - ++ +% -% +| -|
<< >> <<|
& ^ | orelse catch
== != < > <= >=
and
or
= *= *%= *|= /= %= += +%= +|= -= -%= -|= <<= <<|= >>= &= ^= |=

Arrays §

test_arrays.zig
const expect = @import("std").testing.expect;
const assert = @import("std").debug.assert;
const mem = @import("std").mem;

// array literal
const message = [_]u8{ 'h', 'e', 'l', 'l', 'o' };

// get the size of an array
comptime {
    assert(message.len == 5);
}

// A string literal is a single-item pointer to an array.
const same_message = "hello";

comptime {
    assert(mem.eql(u8, &message, same_message));
}

test "iterate over an array" {
    var sum: usize = 0;
    for (message) |byte| {
        sum += byte;
    }
    try expect(sum == 'h' + 'e' + 'l' * 2 + 'o');
}

// modifiable array
var some_integers: [100]i32 = undefined;

test "modify an array" {
    for (&some_integers, 0..) |*item, i| {
        item.* = @intCast(i);
    }
    try expect(some_integers[10] == 10);
    try expect(some_integers[99] == 99);
}

// array concatenation works if the values are known
// at compile time
const part_one = [_]i32{ 1, 2, 3, 4 };
const part_two = [_]i32{ 5, 6, 7, 8 };
const all_of_it = part_one ++ part_two;
comptime {
    assert(mem.eql(i32, &all_of_it, &[_]i32{ 1, 2, 3, 4, 5, 6, 7, 8 }));
}

// remember that string literals are arrays
const hello = "hello";
const world = "world";
const hello_world = hello ++ " " ++ world;
comptime {
    assert(mem.eql(u8, hello_world, "hello world"));
}

// ** does repeating patterns
const pattern = "ab" ** 3;
comptime {
    assert(mem.eql(u8, pattern, "ababab"));
}

// initialize an array to zero
const all_zero = [_]u16{0} ** 10;

comptime {
    assert(all_zero.len == 10);
    assert(all_zero[5] == 0);
}

// use compile-time code to initialize an array
var fancy_array = init: {
    var initial_value: [10]Point = undefined;
    for (&initial_value, 0..) |*pt, i| {
        pt.* = Point{
            .x = @intCast(i),
            .y = @intCast(i * 2),
        };
    }
    break :init initial_value;
};
const Point = struct {
    x: i32,
    y: i32,
};

test "compile-time array initialization" {
    try expect(fancy_array[4].x == 4);
    try expect(fancy_array[4].y == 8);
}

// call a function to initialize an array
var more_points = [_]Point{makePoint(3)} ** 10;
fn makePoint(x: i32) Point {
    return Point{
        .x = x,
        .y = x * 2,
    };
}
test "array initialization with function calls" {
    try expect(more_points[4].x == 3);
    try expect(more_points[4].y == 6);
    try expect(more_points.len == 10);
}
Shell
$ zig test test_arrays.zig
1/4 test_arrays.test.iterate over an array... OK
2/4 test_arrays.test.modify an array... OK
3/4 test_arrays.test.compile-time array initialization... OK
4/4 test_arrays.test.array initialization with function calls... OK
All 4 tests passed.

See also:

Multidimensional Arrays §

Multidimensional arrays can be created by nesting arrays:

test_multidimensional_arrays.zig
const std = @import("std");
const expect = std.testing.expect;

const mat4x4 = [4][4]f32{
    [_]f32{ 1.0, 0.0, 0.0, 0.0 },
    [_]f32{ 0.0, 1.0, 0.0, 1.0 },
    [_]f32{ 0.0, 0.0, 1.0, 0.0 },
    [_]f32{ 0.0, 0.0, 0.0, 1.0 },
};
test "multidimensional arrays" {
    // Access the 2D array by indexing the outer array, and then the inner array.
    try expect(mat4x4[1][1] == 1.0);

    // Here we iterate with for loops.
    for (mat4x4, 0..) |row, row_index| {
        for (row, 0..) |cell, column_index| {
            if (row_index == column_index) {
                try expect(cell == 1.0);
            }
        }
    }
}
Shell
$ zig test test_multidimensional_arrays.zig
1/1 test_multidimensional_arrays.test.multidimensional arrays... OK
All 1 tests passed.

Sentinel-Terminated Arrays §

The syntax [N:x]T describes an array which has a sentinel element of value x at the index corresponding to the length N.

test_null_terminated_array.zig
const std = @import("std");
const expect = std.testing.expect;

test "0-terminated sentinel array" {
    const array = [_:0]u8 {1, 2, 3, 4};

    try expect(@TypeOf(array) == [4:0]u8);
    try expect(array.len == 4);
    try expect(array[4] == 0);
}

test "extra 0s in 0-terminated sentinel array" {
    // The sentinel value may appear earlier, but does not influence the compile-time 'len'.
    const array = [_:0]u8 {1, 0, 0, 4};

    try expect(@TypeOf(array) == [4:0]u8);
    try expect(array.len == 4);
    try expect(array[4] == 0);
}
Shell
$ zig test test_null_terminated_array.zig
1/2 test_null_terminated_array.test.0-terminated sentinel array... OK
2/2 test_null_terminated_array.test.extra 0s in 0-terminated sentinel array... OK
All 2 tests passed.

See also:

Vectors §

A vector is a group of booleans, Integers, Floats, or Pointers which are operated on in parallel, using SIMD instructions if possible. Vector types are created with the builtin function @Vector.

Vectors support the same builtin operators as their underlying base types. These operations are performed element-wise, and return a vector of the same length as the input vectors. This includes:

  • Arithmetic (+, -, /, *, @divFloor, @sqrt, @ceil, @log, etc.)
  • Bitwise operators (>>, <<, &, |, ~, etc.)
  • Comparison operators (<, >, ==, etc.)

It is prohibited to use a math operator on a mixture of scalars (individual numbers) and vectors. Zig provides the @splat builtin to easily convert from scalars to vectors, and it supports @reduce and array indexing syntax to convert from vectors to scalars. Vectors also support assignment to and from fixed-length arrays with comptime-known length.

For rearranging elements within and between vectors, Zig provides the @shuffle and @select functions.

Operations on vectors shorter than the target machine's native SIMD size will typically compile to single SIMD instructions, while vectors longer than the target machine's native SIMD size will compile to multiple SIMD instructions. If a given operation doesn't have SIMD support on the target architecture, the compiler will default to operating on each vector element one at a time. Zig supports any comptime-known vector length up to 2^32-1, although small powers of two (2-64) are most typical. Note that excessively long vector lengths (e.g. 2^20) may result in compiler crashes on current versions of Zig.

test_vector.zig
const std = @import("std");
const expectEqual = std.testing.expectEqual;

test "Basic vector usage" {
    // Vectors have a compile-time known length and base type.
    const a = @Vector(4, i32){ 1, 2, 3, 4 };
    const b = @Vector(4, i32){ 5, 6, 7, 8 };

    // Math operations take place element-wise.
    const c = a + b;

    // Individual vector elements can be accessed using array indexing syntax.
    try expectEqual(6, c[0]);
    try expectEqual(8, c[1]);
    try expectEqual(10, c[2]);
    try expectEqual(12, c[3]);
}

test "Conversion between vectors, arrays, and slices" {
    // Vectors and fixed-length arrays can be automatically assigned back and forth
    const arr1: [4]f32 = [_]f32{ 1.1, 3.2, 4.5, 5.6 };
    const vec: @Vector(4, f32) = arr1;
    const arr2: [4]f32 = vec;
    try expectEqual(arr1, arr2);

    // You can also assign from a slice with comptime-known length to a vector using .*
    const vec2: @Vector(2, f32) = arr1[1..3].*;

    const slice: []const f32 = &arr1;
    var offset: u32 = 1; // var to make it runtime-known
    _ = &offset; // suppress 'var is never mutated' error
    // To extract a comptime-known length from a runtime-known offset,
    // first extract a new slice from the starting offset, then an array of
    // comptime-known length
    const vec3: @Vector(2, f32) = slice[offset..][0..2].*;
    try expectEqual(slice[offset], vec2[0]);
    try expectEqual(slice[offset + 1], vec2[1]);
    try expectEqual(vec2, vec3);
}
Shell
$ zig test test_vector.zig
1/2 test_vector.test.Basic vector usage... OK
2/2 test_vector.test.Conversion between vectors, arrays, and slices... OK
All 2 tests passed.

TODO talk about C ABI interop
TODO consider suggesting std.MultiArrayList

See also:

Pointers §

Zig has two kinds of pointers: single-item and many-item.

  • *T - single-item pointer to exactly one item.
    • Supports deref syntax: ptr.*
  • [*]T - many-item pointer to unknown number of items.
    • Supports index syntax: ptr[i]
    • Supports slice syntax: ptr[start..end] and ptr[start..]
    • Supports pointer arithmetic: ptr + x, ptr - x
    • T must have a known size, which means that it cannot be anyopaque or any other opaque type.

These types are closely related to Arrays and Slices:

  • *[N]T - pointer to N items, same as single-item pointer to an array.
    • Supports index syntax: array_ptr[i]
    • Supports slice syntax: array_ptr[start..end]
    • Supports len property: array_ptr.len
  • []T - is a slice (a fat pointer, which contains a pointer of type [*]T and a length).
    • Supports index syntax: slice[i]
    • Supports slice syntax: slice[start..end]
    • Supports len property: slice.len

Use &x to obtain a single-item pointer:

test_single_item_pointer.zig
const expect = @import("std").testing.expect;

test "address of syntax" {
    // Get the address of a variable:
    const x: i32 = 1234;
    const x_ptr = &x;

    // Dereference a pointer:
    try expect(x_ptr.* == 1234);

    // When you get the address of a const variable, you get a const single-item pointer.
    try expect(@TypeOf(x_ptr) == *const i32);

    // If you want to mutate the value, you'd need an address of a mutable variable:
    var y: i32 = 5678;
    const y_ptr = &y;
    try expect(@TypeOf(y_ptr) == *i32);
    y_ptr.* += 1;
    try expect(y_ptr.* == 5679);
}

test "pointer array access" {
    // Taking an address of an individual element gives a
    // single-item pointer. This kind of pointer
    // does not support pointer arithmetic.
    var array = [_]u8{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
    const ptr = &array[2];
    try expect(@TypeOf(ptr) == *u8);

    try expect(array[2] == 3);
    ptr.* += 1;
    try expect(array[2] == 4);
}
Shell
$ zig test test_single_item_pointer.zig
1/2 test_single_item_pointer.test.address of syntax... OK
2/2 test_single_item_pointer.test.pointer array access... OK
All 2 tests passed.

Zig supports pointer arithmetic. It's better to assign the pointer to [*]T and increment that variable. For example, directly incrementing the pointer from a slice will corrupt it.

test_pointer_arithmetic.zig
const expect = @import("std").testing.expect;

test "pointer arithmetic with many-item pointer" {
    const array = [_]i32{ 1, 2, 3, 4 };
    var ptr: [*]const i32 = &array;

    try expect(ptr[0] == 1);
    ptr += 1;
    try expect(ptr[0] == 2);

    // slicing a many-item pointer without an end is equivalent to
    // pointer arithmetic: `ptr[start..] == ptr + start`
    try expect(ptr[1..] == ptr + 1);
}

test "pointer arithmetic with slices" {
    var array = [_]i32{ 1, 2, 3, 4 };
    var length: usize = 0; // var to make it runtime-known
    _ = &length; // suppress 'var is never mutated' error
    var slice = array[length..array.len];

    try expect(slice[0] == 1);
    try expect(slice.len == 4);

    slice.ptr += 1;
    // now the slice is in an bad state since len has not been updated

    try expect(slice[0] == 2);
    try expect(slice.len == 4);
}
Shell
$ zig test test_pointer_arithmetic.zig
1/2 test_pointer_arithmetic.test.pointer arithmetic with many-item pointer... OK
2/2 test_pointer_arithmetic.test.pointer arithmetic with slices... OK
All 2 tests passed.

In Zig, we generally prefer Slices rather than Sentinel-Terminated Pointers. You can turn an array or pointer into a slice using slice syntax.

Slices have bounds checking and are therefore protected against this kind of undefined behavior. This is one reason we prefer slices to pointers.

test_slice_bounds.zig
const expect = @import("std").testing.expect;

test "pointer slicing" {
    var array = [_]u8{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
    var start: usize = 2; // var to make it runtime-known
    _ = &start; // suppress 'var is never mutated' error
    const slice = array[start..4];
    try expect(slice.len == 2);

    try expect(array[3] == 4);
    slice[1] += 1;
    try expect(array[3] == 5);
}
Shell
$ zig test test_slice_bounds.zig
1/1 test_slice_bounds.test.pointer slicing... OK
All 1 tests passed.

Pointers work at compile-time too, as long as the code does not depend on an undefined memory layout:

test_comptime_pointers.zig
const expect = @import("std").testing.expect;

test "comptime pointers" {
    comptime {
        var x: i32 = 1;
        const ptr = &x;
        ptr.* += 1;
        x += 1;
        try expect(ptr.* == 3);
    }
}
Shell
$ zig test test_comptime_pointers.zig
1/1 test_comptime_pointers.test.comptime pointers... OK
All 1 tests passed.

To convert an integer address into a pointer, use @ptrFromInt. To convert a pointer to an integer, use @intFromPtr:

test_integer_pointer_conversion.zig
const expect = @import("std").testing.expect;

test "@intFromPtr and @ptrFromInt" {
    const ptr: *i32 = @ptrFromInt(0xdeadbee0);
    const addr = @intFromPtr(ptr);
    try expect(@TypeOf(addr) == usize);
    try expect(addr == 0xdeadbee0);
}
Shell
$ zig test test_integer_pointer_conversion.zig
1/1 test_integer_pointer_conversion.test.@intFromPtr and @ptrFromInt... OK
All 1 tests passed.

Zig is able to preserve memory addresses in comptime code, as long as the pointer is never dereferenced:

test_comptime_pointer_conversion.zig
const expect = @import("std").testing.expect;

test "comptime @ptrFromInt" {
    comptime {
        // Zig is able to do this at compile-time, as long as
        // ptr is never dereferenced.
        const ptr: *i32 = @ptrFromInt(0xdeadbee0);
        const addr = @intFromPtr(ptr);
        try expect(@TypeOf(addr) == usize);
        try expect(addr == 0xdeadbee0);
    }
}
Shell
$ zig test test_comptime_pointer_conversion.zig
1/1 test_comptime_pointer_conversion.test.comptime @ptrFromInt... OK
All 1 tests passed.

See also:

volatile §

Loads and stores are assumed to not have side effects. If a given load or store should have side effects, such as Memory Mapped Input/Output (MMIO), use volatile. In the following code, loads and stores with mmio_ptr are guaranteed to all happen and in the same order as in source code:

test_volatile.zig
const expect = @import("std").testing.expect;

test "volatile" {
    const mmio_ptr: *volatile u8 = @ptrFromInt(0x12345678);
    try expect(@TypeOf(mmio_ptr) == *volatile u8);
}
Shell
$ zig test test_volatile.zig
1/1 test_volatile.test.volatile... OK
All 1 tests passed.

Note that volatile is unrelated to concurrency and Atomics. If you see code that is using volatile for something other than Memory Mapped Input/Output, it is probably a bug.

@ptrCast converts a pointer's element type to another. This creates a new pointer that can cause undetectable illegal behavior depending on the loads and stores that pass through it. Generally, other kinds of type conversions are preferable to @ptrCast if possible.

test_pointer_casting.zig
const std = @import("std");
const expect = std.testing.expect;

test "pointer casting" {
    const bytes align(@alignOf(u32)) = [_]u8{ 0x12, 0x12, 0x12, 0x12 };
    const u32_ptr: *const u32 = @ptrCast(&bytes);
    try expect(u32_ptr.* == 0x12121212);

    // Even this example is contrived - there are better ways to do the above than
    // pointer casting. For example, using a slice narrowing cast:
    const u32_value = std.mem.bytesAsSlice(u32, bytes[0..])[0];
    try expect(u32_value == 0x12121212);

    // And even another way, the most straightforward way to do it:
    try expect(@as(u32, @bitCast(bytes)) == 0x12121212);
}

test "pointer child type" {
    // pointer types have a `child` field which tells you the type they point to.
    try expect(@typeInfo(*u32).Pointer.child == u32);
}
Shell
$ zig test test_pointer_casting.zig
1/2 test_pointer_casting.test.pointer casting... OK
2/2 test_pointer_casting.test.pointer child type... OK
All 2 tests passed.

Alignment §

Each type has an alignment - a number of bytes such that, when a value of the type is loaded from or stored to memory, the memory address must be evenly divisible by this number. You can use @alignOf to find out this value for any type.

Alignment depends on the CPU architecture, but is always a power of two, and less than 1 << 29.

In Zig, a pointer type has an alignment value. If the value is equal to the alignment of the underlying type, it can be omitted from the type:

test_variable_alignment.zig
const std = @import("std");
const builtin = @import("builtin");
const expect = std.testing.expect;

test "variable alignment" {
    var x: i32 = 1234;
    const align_of_i32 = @alignOf(@TypeOf(x));
    try expect(@TypeOf(&x) == *i32);
    try expect(*i32 == *align(align_of_i32) i32);
    if (builtin.target.cpu.arch == .x86_64) {
        try expect(@typeInfo(*i32).Pointer.alignment == 4);
    }
}
Shell
$ zig test test_variable_alignment.zig
1/1 test_variable_alignment.test.variable alignment... OK
All 1 tests passed.

In the same way that a *i32 can be coerced to a *const i32, a pointer with a larger alignment can be implicitly cast to a pointer with a smaller alignment, but not vice versa.

You can specify alignment on variables and functions. If you do this, then pointers to them get the specified alignment:

test_variable_func_alignment.zig
const expect = @import("std").testing.expect;

var foo: u8 align(4) = 100;

test "global variable alignment" {
    try expect(@typeInfo(@TypeOf(&foo)).Pointer.alignment == 4);
    try expect(@TypeOf(&foo) == *align(4) u8);
    const as_pointer_to_array: *align(4) [1]u8 = &foo;
    const as_slice: []align(4) u8 = as_pointer_to_array;
    const as_unaligned_slice: []u8 = as_slice;
    try expect(as_unaligned_slice[0] == 100);
}

fn derp() align(@sizeOf(usize) * 2) i32 {
    return 1234;
}
fn noop1() align(1) void {}
fn noop4() align(4) void {}

test "function alignment" {
    try expect(derp() == 1234);
    try expect(@TypeOf(derp) == fn () i32);
    try expect(@TypeOf(&derp) == *align(@sizeOf(usize) * 2) const fn () i32);

    noop1();
    try expect(@TypeOf(noop1) == fn () void);
    try expect(@TypeOf(&noop1) == *align(1) const fn () void);

    noop4();
    try expect(@TypeOf(noop4) == fn () void);
    try expect(@TypeOf(&noop4) == *align(4) const fn () void);
}
Shell
$ zig test test_variable_func_alignment.zig
1/2 test_variable_func_alignment.test.global variable alignment... OK
2/2 test_variable_func_alignment.test.function alignment... OK
All 2 tests passed.

If you have a pointer or a slice that has a small alignment, but you know that it actually has a bigger alignment, use @alignCast to change the pointer into a more aligned pointer. This is a no-op at runtime, but inserts a safety check:

test_incorrect_pointer_alignment.zig
const std = @import("std");

test "pointer alignment safety" {
    var array align(4) = [_]u32{ 0x11111111, 0x11111111 };
    const bytes = std.mem.sliceAsBytes(array[0..]);
    try std.testing.expect(foo(bytes) == 0x11111111);
}
fn foo(bytes: []u8) u32 {
    const slice4 = bytes[1..5];
    const int_slice = std.mem.bytesAsSlice(u32, @as([]align(4) u8, @alignCast(slice4)));
    return int_slice[0];
}
Shell
$ zig test test_incorrect_pointer_alignment.zig
1/1 test_incorrect_pointer_alignment.test.pointer alignment safety... thread 135721 panic: incorrect alignment
/home/andy/src/zig-0.12.x/docgen_tmp/test_incorrect_pointer_alignment.zig:10:68: 0x103931a in foo (test)
    const int_slice = std.mem.bytesAsSlice(u32, @as([]align(4) u8, @alignCast(slice4)));
                                                                   ^
/home/andy/src/zig-0.12.x/docgen_tmp/test_incorrect_pointer_alignment.zig:6:31: 0x10391b7 in test.pointer alignment safety (test)
    try std.testing.expect(foo(bytes) == 0x11111111);
                              ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:158:25: 0x10441cd in mainTerminal (test)
        if (test_fn.func()) |_| {
                        ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:35:28: 0x103a45b in main (test)
        return mainTerminal();
                           ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x10397e9 in posixCallMainAndExit (test)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1039351 in _start (test)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
error: the following test command crashed:
/home/andy/src/zig-0.12.x/zig-cache/o/9fa80847b524039ee2ed6d25a810a79c/test

allowzero §

This pointer attribute allows a pointer to have address zero. This is only ever needed on the freestanding OS target, where the address zero is mappable. If you want to represent null pointers, use Optional Pointers instead. Optional Pointers with allowzero are not the same size as pointers. In this code example, if the pointer did not have the allowzero attribute, this would be a Pointer Cast Invalid Null panic:

test_allowzero.zig
const std = @import("std");
const expect = std.testing.expect;

test "allowzero" {
    var zero: usize = 0; // var to make to runtime-known
    _ = &zero; // suppress 'var is never mutated' error
    const ptr: *allowzero i32 = @ptrFromInt(zero);
    try expect(@intFromPtr(ptr) == 0);
}
Shell
$ zig test test_allowzero.zig
1/1 test_allowzero.test.allowzero... OK
All 1 tests passed.

Sentinel-Terminated Pointers §

The syntax [*:x]T describes a pointer that has a length determined by a sentinel value. This provides protection against buffer overflow and overreads.

sentinel-terminated_pointer.zig
const std = @import("std");

// This is also available as `std.c.printf`.
pub extern "c" fn printf(format: [*:0]const u8, ...) c_int;

pub fn main() anyerror!void {
    _ = printf("Hello, world!\n"); // OK

    const msg = "Hello, world!\n";
    const non_null_terminated_msg: [msg.len]u8 = msg.*;
    _ = printf(&non_null_terminated_msg);
}
Shell
$ zig build-exe sentinel-terminated_pointer.zig -lc
sentinel-terminated_pointer.zig:11:16: error: expected type '[*:0]const u8', found '*const [14]u8'
    _ = printf(&non_null_terminated_msg);
               ^~~~~~~~~~~~~~~~~~~~~~~~
sentinel-terminated_pointer.zig:11:16: note: destination pointer requires '0' sentinel
sentinel-terminated_pointer.zig:4:35: note: parameter type declared here
pub extern "c" fn printf(format: [*:0]const u8, ...) c_int;
                                 ~^~~~~~~~~~~~
referenced by:
    callMain: /home/andy/src/zig-0.12.x/lib/std/start.zig:511:32
    callMainWithArgs: /home/andy/src/zig-0.12.x/lib/std/start.zig:469:12
    remaining reference traces hidden; use '-freference-trace' to see all reference traces

See also:

Slices §

A slice is a pointer and a length. The difference between an array and a slice is that the array's length is part of the type and known at compile-time, whereas the slice's length is known at runtime. Both can be accessed with the `len` field.

test_basic_slices.zig
const expect = @import("std").testing.expect;

test "basic slices" {
    var array = [_]i32{ 1, 2, 3, 4 };
    var known_at_runtime_zero: usize = 0;
    _ = &known_at_runtime_zero;
    const slice = array[known_at_runtime_zero..array.len];
    try expect(@TypeOf(slice) == []i32);
    try expect(&slice[0] == &array[0]);
    try expect(slice.len == array.len);

    // If you slice with comptime-known start and end positions, the result is
    // a pointer to an array, rather than a slice.
    const array_ptr = array[0..array.len];
    try expect(@TypeOf(array_ptr) == *[array.len]i32);

    // You can perform a slice-by-length by slicing twice. This allows the compiler
    // to perform some optimisations like recognising a comptime-known length when
    // the start position is only known at runtime.
    var runtime_start: usize = 1;
    _ = &runtime_start;
    const length = 2;
    const array_ptr_len = array[runtime_start..][0..length];
    try expect(@TypeOf(array_ptr_len) == *[length]i32);

    // Using the address-of operator on a slice gives a single-item pointer.
    try expect(@TypeOf(&slice[0]) == *i32);
    // Using the `ptr` field gives a many-item pointer.
    try expect(@TypeOf(slice.ptr) == [*]i32);
    try expect(@intFromPtr(slice.ptr) == @intFromPtr(&slice[0]));

    // Slices have array bounds checking. If you try to access something out
    // of bounds, you'll get a safety check failure:
    slice[10] += 1;

    // Note that `slice.ptr` does not invoke safety checking, while `&slice[0]`
    // asserts that the slice has len > 0.
}
Shell
$ zig test test_basic_slices.zig
1/1 test_basic_slices.test.basic slices... thread 135881 panic: index out of bounds: index 10, len 4
/home/andy/src/zig-0.12.x/docgen_tmp/test_basic_slices.zig:34:10: 0x1039539 in test.basic slices (test)
    slice[10] += 1;
         ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:158:25: 0x1044ced in mainTerminal (test)
        if (test_fn.func()) |_| {
                        ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:35:28: 0x103ae3b in main (test)
        return mainTerminal();
                           ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x1039b19 in posixCallMainAndExit (test)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1039681 in _start (test)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
error: the following test command crashed:
/home/andy/src/zig-0.12.x/zig-cache/o/680f2ab1178a413b155dc3d8a030506d/test

This is one reason we prefer slices to pointers.

test_slices.zig
const std = @import("std");
const expect = std.testing.expect;
const mem = std.mem;
const fmt = std.fmt;

test "using slices for strings" {
    // Zig has no concept of strings. String literals are const pointers
    // to null-terminated arrays of u8, and by convention parameters
    // that are "strings" are expected to be UTF-8 encoded slices of u8.
    // Here we coerce *const [5:0]u8 and *const [6:0]u8 to []const u8
    const hello: []const u8 = "hello";
    const world: []const u8 = "世界";

    var all_together: [100]u8 = undefined;
    // You can use slice syntax with at least one runtime-known index on an
    // array to convert an array into a slice.
    var start: usize = 0;
    _ = &start;
    const all_together_slice = all_together[start..];
    // String concatenation example.
    const hello_world = try fmt.bufPrint(all_together_slice, "{s} {s}", .{ hello, world });

    // Generally, you can use UTF-8 and not worry about whether something is a
    // string. If you don't need to deal with individual characters, no need
    // to decode.
    try expect(mem.eql(u8, hello_world, "hello 世界"));
}

test "slice pointer" {
    var array: [10]u8 = undefined;
    const ptr = &array;
    try expect(@TypeOf(ptr) == *[10]u8);

    // A pointer to an array can be sliced just like an array:
    var start: usize = 0;
    var end: usize = 5;
    _ = .{ &start, &end };
    const slice = ptr[start..end];
    // The slice is mutable because we sliced a mutable pointer.
    try expect(@TypeOf(slice) == []u8);
    slice[2] = 3;
    try expect(array[2] == 3);

    // Again, slicing with comptime-known indexes will produce another pointer
    // to an array:
    const ptr2 = slice[2..3];
    try expect(ptr2.len == 1);
    try expect(ptr2[0] == 3);
    try expect(@TypeOf(ptr2) == *[1]u8);
}
Shell
$ zig test test_slices.zig
1/2 test_slices.test.using slices for strings... OK
2/2 test_slices.test.slice pointer... OK
All 2 tests passed.

See also:

Sentinel-Terminated Slices §

The syntax [:x]T is a slice which has a runtime-known length and also guarantees a sentinel value at the element indexed by the length. The type does not guarantee that there are no sentinel elements before that. Sentinel-terminated slices allow element access to the len index.

test_null_terminated_slice.zig
const std = @import("std");
const expect = std.testing.expect;

test "0-terminated slice" {
    const slice: [:0]const u8 = "hello";

    try expect(slice.len == 5);
    try expect(slice[5] == 0);
}
Shell
$ zig test test_null_terminated_slice.zig
1/1 test_null_terminated_slice.test.0-terminated slice... OK
All 1 tests passed.

Sentinel-terminated slices can also be created using a variation of the slice syntax data[start..end :x], where data is a many-item pointer, array or slice and x is the sentinel value.

test_null_terminated_slicing.zig
const std = @import("std");
const expect = std.testing.expect;

test "0-terminated slicing" {
    var array = [_]u8{ 3, 2, 1, 0, 3, 2, 1, 0 };
    var runtime_length: usize = 3;
    _ = &runtime_length;
    const slice = array[0..runtime_length :0];

    try expect(@TypeOf(slice) == [:0]u8);
    try expect(slice.len == 3);
}
Shell
$ zig test test_null_terminated_slicing.zig
1/1 test_null_terminated_slicing.test.0-terminated slicing... OK
All 1 tests passed.

Sentinel-terminated slicing asserts that the element in the sentinel position of the backing data is actually the sentinel value. If this is not the case, safety-protected Undefined Behavior results.

test_sentinel_mismatch.zig
const std = @import("std");
const expect = std.testing.expect;

test "sentinel mismatch" {
    var array = [_]u8{ 3, 2, 1, 0 };

    // Creating a sentinel-terminated slice from the array with a length of 2
    // will result in the value `1` occupying the sentinel element position.
    // This does not match the indicated sentinel value of `0` and will lead
    // to a runtime panic.
    var runtime_length: usize = 2;
    _ = &runtime_length;
    const slice = array[0..runtime_length :0];

    _ = slice;
}
Shell
$ zig test test_sentinel_mismatch.zig
1/1 test_sentinel_mismatch.test.sentinel mismatch... thread 136139 panic: sentinel mismatch: expected 0, found 1
/home/andy/src/zig-0.12.x/docgen_tmp/test_sentinel_mismatch.zig:13:24: 0x10390a6 in test.sentinel mismatch (test)
    const slice = array[0..runtime_length :0];
                       ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:158:25: 0x1044d0d in mainTerminal (test)
        if (test_fn.func()) |_| {
                        ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:35:28: 0x103ac1b in main (test)
        return mainTerminal();
                           ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x1039689 in posixCallMainAndExit (test)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x10391f1 in _start (test)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
error: the following test command crashed:
/home/andy/src/zig-0.12.x/zig-cache/o/012cc54bdabd690d06e7364a0c60b7c0/test

See also:

struct §

test_structs.zig
// Declare a struct.
// Zig gives no guarantees about the order of fields and the size of
// the struct but the fields are guaranteed to be ABI-aligned.
const Point = struct {
    x: f32,
    y: f32,
};

// Maybe we want to pass it to OpenGL so we want to be particular about
// how the bytes are arranged.
const Point2 = packed struct {
    x: f32,
    y: f32,
};


// Declare an instance of a struct.
const p = Point {
    .x = 0.12,
    .y = 0.34,
};

// Maybe we're not ready to fill out some of the fields.
var p2 = Point {
    .x = 0.12,
    .y = undefined,
};

// Structs can have methods
// Struct methods are not special, they are only namespaced
// functions that you can call with dot syntax.
const Vec3 = struct {
    x: f32,
    y: f32,
    z: f32,

    pub fn init(x: f32, y: f32, z: f32) Vec3 {
        return Vec3 {
            .x = x,
            .y = y,
            .z = z,
        };
    }

    pub fn dot(self: Vec3, other: Vec3) f32 {
        return self.x * other.x + self.y * other.y + self.z * other.z;
    }
};

const expect = @import("std").testing.expect;
test "dot product" {
    const v1 = Vec3.init(1.0, 0.0, 0.0);
    const v2 = Vec3.init(0.0, 1.0, 0.0);
    try expect(v1.dot(v2) == 0.0);

    // Other than being available to call with dot syntax, struct methods are
    // not special. You can reference them as any other declaration inside
    // the struct:
    try expect(Vec3.dot(v1, v2) == 0.0);
}

// Structs can have declarations.
// Structs can have 0 fields.
const Empty = struct {
    pub const PI = 3.14;
};
test "struct namespaced variable" {
    try expect(Empty.PI == 3.14);
    try expect(@sizeOf(Empty) == 0);

    // you can still instantiate an empty struct
    const does_nothing = Empty {};

    _ = does_nothing;
}

// struct field order is determined by the compiler for optimal performance.
// however, you can still calculate a struct base pointer given a field pointer:
fn setYBasedOnX(x: *f32, y: f32) void {
    const point: *Point = @fieldParentPtr("x", x);
    point.y = y;
}
test "field parent pointer" {
    var point = Point {
        .x = 0.1234,
        .y = 0.5678,
    };
    setYBasedOnX(&point.x, 0.9);
    try expect(point.y == 0.9);
}

// You can return a struct from a function. This is how we do generics
// in Zig:
fn LinkedList(comptime T: type) type {
    return struct {
        pub const Node = struct {
            prev: ?*Node,
            next: ?*Node,
            data: T,
        };

        first: ?*Node,
        last:  ?*Node,
        len:   usize,
    };
}

test "linked list" {
    // Functions called at compile-time are memoized. This means you can
    // do this:
    try expect(LinkedList(i32) == LinkedList(i32));

    const list = LinkedList(i32){
        .first = null,
        .last = null,
        .len = 0,
    };
    try expect(list.len == 0);

    // Since types are first class values you can instantiate the type
    // by assigning it to a variable:
    const ListOfInts = LinkedList(i32);
    try expect(ListOfInts == LinkedList(i32));

    var node = ListOfInts.Node{
        .prev = null,
        .next = null,
        .data = 1234,
    };
    const list2 = LinkedList(i32){
        .first = &node,
        .last = &node,
        .len = 1,
    };

    // When using a pointer to a struct, fields can be accessed directly,
    // without explicitly dereferencing the pointer.
    // So you can do
    try expect(list2.first.?.data == 1234);
    // instead of try expect(list2.first.?.*.data == 1234);
}
Shell
$ zig test test_structs.zig
1/4 test_structs.test.dot product... OK
2/4 test_structs.test.struct namespaced variable... OK
3/4 test_structs.test.field parent pointer... OK
4/4 test_structs.test.linked list... OK
All 4 tests passed.

Default Field Values §

Each struct field may have an expression indicating the default field value. Such expressions are executed at comptime, and allow the field to be omitted in a struct literal expression:

struct_default_field_values.zig
const Foo = struct {
    a: i32 = 1234,
    b: i32,
};

test "default struct initialization fields" {
    const x: Foo = .{
        .b = 5,
    };
    if (x.a + x.b != 1239) {
        comptime unreachable;
    }
}
Shell
$ zig test struct_default_field_values.zig
1/1 struct_default_field_values.test.default struct initialization fields... OK
All 1 tests passed.

Default field values are only appropriate when the data invariants of a struct cannot be violated by omitting that field from an initialization.

For example, here is an inappropriate use of default struct field initialization:

bad_default_value.zig
const Threshold = struct {
    minimum: f32 = 0.25,
    maximum: f32 = 0.75,

    const Category = enum { low, medium, high };

    fn categorize(t: Threshold, value: f32) Category {
        assert(t.maximum >= t.minimum);
        if (value < t.minimum) return .low;
        if (value > t.maximum) return .high;
        return .medium;
    }
};

pub fn main() !void {
    var threshold: Threshold = .{
        .maximum = 0.20,
    };
    const category = threshold.categorize(0.90);
    try std.io.getStdOut().writeAll(@tagName(category));
}

const std = @import("std");
const assert = std.debug.assert;
Shell
$ zig build-exe bad_default_value.zig
$ ./bad_default_value
thread 136303 panic: reached unreachable code
/home/andy/src/zig-0.12.x/lib/std/debug.zig:403:14: 0x10366fd in assert (bad_default_value)
    if (!ok) unreachable; // assertion failure
             ^
/home/andy/src/zig-0.12.x/docgen_tmp/bad_default_value.zig:8:15: 0x1033c09 in categorize (bad_default_value)
        assert(t.maximum >= t.minimum);
              ^
/home/andy/src/zig-0.12.x/docgen_tmp/bad_default_value.zig:19:42: 0x1033b3a in main (bad_default_value)
    const category = threshold.categorize(0.90);
                                         ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:511:37: 0x1033a55 in posixCallMainAndExit (bad_default_value)
            const result = root.main() catch |err| {
                                    ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1033571 in _start (bad_default_value)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Above you can see the danger of ignoring this principle. The default field values caused the data invariant to be violated, causing illegal behavior.

To fix this, remove the default values from all the struct fields, and provide a named default value:

struct_default_value.zig
const Threshold = struct {
    minimum: f32,
    maximum: f32,

    const default: Threshold = .{
        .minimum = 0.25,
        .maximum = 0.75,
    };
};

If a struct value requires a runtime-known value in order to be initialized without violating data invariants, then use an initialization method that accepts those runtime values, and populates the remaining fields.

extern struct §

An extern struct has in-memory layout matching the C ABI for the target.

If well-defined in-memory layout is not required, struct is a better choice because it places fewer restrictions on the compiler.

See packed struct for a struct that has the ABI of its backing integer, which can be useful for modeling flags.

See also:

packed struct §

Unlike normal structs, packed structs have guaranteed in-memory layout:

  • Fields remain in the order declared, least to most significant.
  • There is no padding between fields.
  • Zig supports arbitrary width Integers and although normally, integers with fewer than 8 bits will still use 1 byte of memory, in packed structs, they use exactly their bit width.
  • bool fields use exactly 1 bit.
  • An enum field uses exactly the bit width of its integer tag type.
  • A packed union field uses exactly the bit width of the union field with the largest bit width.

This means that a packed struct can participate in a @bitCast or a @ptrCast to reinterpret memory. This even works at comptime:

test_packed_structs.zig
const std = @import("std");
const native_endian = @import("builtin").target.cpu.arch.endian();
const expect = std.testing.expect;

const Full = packed struct {
    number: u16,
};
const Divided = packed struct {
    half1: u8,
    quarter3: u4,
    quarter4: u4,
};

test "@bitCast between packed structs" {
    try doTheTest();
    try comptime doTheTest();
}

fn doTheTest() !void {
    try expect(@sizeOf(Full) == 2);
    try expect(@sizeOf(Divided) == 2);
    const full = Full{ .number = 0x1234 };
    const divided: Divided = @bitCast(full);
    try expect(divided.half1 == 0x34);
    try expect(divided.quarter3 == 0x2);
    try expect(divided.quarter4 == 0x1);

    const ordered: [2]u8 = @bitCast(full);
    switch (native_endian) {
        .big => {
            try expect(ordered[0] == 0x12);
            try expect(ordered[1] == 0x34);
        },
        .little => {
            try expect(ordered[0] == 0x34);
            try expect(ordered[1] == 0x12);
        },
    }
}
Shell
$ zig test test_packed_structs.zig
1/1 test_packed_structs.test.@bitCast between packed structs... OK
All 1 tests passed.

The backing integer is inferred from the fields' total bit width. Optionally, it can be explicitly provided and enforced at compile time:

test_missized_packed_struct.zig
test "missized packed struct" {
    const S = packed struct(u32) { a: u16, b: u8 };
    _ = S{ .a = 4, .b = 2 };
}
Shell
$ zig test test_missized_packed_struct.zig
docgen_tmp/test_missized_packed_struct.zig:2:29: error: backing integer type 'u32' has bit size 32 but the struct fields have a total bit size of 24
    const S = packed struct(u32) { a: u16, b: u8 };
                            ^~~

Zig allows the address to be taken of a non-byte-aligned field:

test_pointer_to_non-byte_aligned_field.zig
const std = @import("std");
const expect = std.testing.expect;

const BitField = packed struct {
    a: u3,
    b: u3,
    c: u2,
};

var foo = BitField{
    .a = 1,
    .b = 2,
    .c = 3,
};

test "pointer to non-byte-aligned field" {
    const ptr = &foo.b;
    try expect(ptr.* == 2);
}
Shell
$ zig test test_pointer_to_non-byte_aligned_field.zig
1/1 test_pointer_to_non-byte_aligned_field.test.pointer to non-byte-aligned field... OK
All 1 tests passed.

However, the pointer to a non-byte-aligned field has special properties and cannot be passed when a normal pointer is expected:

test_misaligned_pointer.zig
const std = @import("std");
const expect = std.testing.expect;

const BitField = packed struct {
    a: u3,
    b: u3,
    c: u2,
};

var bit_field = BitField{
    .a = 1,
    .b = 2,
    .c = 3,
};

test "pointer to non-byte-aligned field" {
    try expect(bar(&bit_field.b) == 2);
}

fn bar(x: *const u3) u3 {
    return x.*;
}
Shell
$ zig test test_misaligned_pointer.zig
docgen_tmp/test_misaligned_pointer.zig:17:20: error: expected type '*const u3', found '*align(1:3:1) u3'
    try expect(bar(&bit_field.b) == 2);
                   ^~~~~~~~~~~~
docgen_tmp/test_misaligned_pointer.zig:17:20: note: pointer host size '1' cannot cast into pointer host size '0'
docgen_tmp/test_misaligned_pointer.zig:17:20: note: pointer bit offset '3' cannot cast into pointer bit offset '0'
docgen_tmp/test_misaligned_pointer.zig:20:11: note: parameter type declared here
fn bar(x: *const u3) u3 {
          ^~~~~~~~~

In this case, the function bar cannot be called because the pointer to the non-ABI-aligned field mentions the bit offset, but the function expects an ABI-aligned pointer.

Pointers to non-ABI-aligned fields share the same address as the other fields within their host integer:

test_packed_struct_field_address.zig
const std = @import("std");
const expect = std.testing.expect;

const BitField = packed struct {
    a: u3,
    b: u3,
    c: u2,
};

var bit_field = BitField{
    .a = 1,
    .b = 2,
    .c = 3,
};

test "pointers of sub-byte-aligned fields share addresses" {
    try expect(@intFromPtr(&bit_field.a) == @intFromPtr(&bit_field.b));
    try expect(@intFromPtr(&bit_field.a) == @intFromPtr(&bit_field.c));
}
Shell
$ zig test test_packed_struct_field_address.zig
1/1 test_packed_struct_field_address.test.pointers of sub-byte-aligned fields share addresses... OK
All 1 tests passed.

This can be observed with @bitOffsetOf and offsetOf:

test_bitOffsetOf_offsetOf.zig
const std = @import("std");
const expect = std.testing.expect;

const BitField = packed struct {
    a: u3,
    b: u3,
    c: u2,
};

test "offsets of non-byte-aligned fields" {
    comptime {
        try expect(@bitOffsetOf(BitField, "a") == 0);
        try expect(@bitOffsetOf(BitField, "b") == 3);
        try expect(@bitOffsetOf(BitField, "c") == 6);

        try expect(@offsetOf(BitField, "a") == 0);
        try expect(@offsetOf(BitField, "b") == 0);
        try expect(@offsetOf(BitField, "c") == 0);
    }
}
Shell
$ zig test test_bitOffsetOf_offsetOf.zig
1/1 test_bitOffsetOf_offsetOf.test.offsets of non-byte-aligned fields... OK
All 1 tests passed.

Packed structs have the same alignment as their backing integer, however, overaligned pointers to packed structs can override this:

test_overaligned_packed_struct.zig
const std = @import("std");
const expect = std.testing.expect;

const S = packed struct {
    a: u32,
    b: u32,
};
test "overaligned pointer to packed struct" {
    var foo: S align(4) = .{ .a = 1, .b = 2 };
    const ptr: *align(4) S = &foo;
    const ptr_to_b: *u32 = &ptr.b;
    try expect(ptr_to_b.* == 2);
}
Shell
$ zig test test_overaligned_packed_struct.zig
1/1 test_overaligned_packed_struct.test.overaligned pointer to packed struct... OK
All 1 tests passed.

It's also possible to set alignment of struct fields:

test_aligned_struct_fields.zig
const std = @import("std");
const expectEqual = std.testing.expectEqual;

test "aligned struct fields" {
    const S = struct {
        a: u32 align(2),
        b: u32 align(64),
    };
    var foo = S{ .a = 1, .b = 2 };

    try expectEqual(64, @alignOf(S));
    try expectEqual(*align(2) u32, @TypeOf(&foo.a));
    try expectEqual(*align(64) u32, @TypeOf(&foo.b));
}
Shell
$ zig test test_aligned_struct_fields.zig
1/1 test_aligned_struct_fields.test.aligned struct fields... OK
All 1 tests passed.

Using packed structs with volatile is problematic, and may be a compile error in the future. For details on this subscribe to this issue. TODO update these docs with a recommendation on how to use packed structs with MMIO (the use case for volatile packed structs) once this issue is resolved. Don't worry, there will be a good solution for this use case in zig.

Struct Naming §

Since all structs are anonymous, Zig infers the type name based on a few rules.

  • If the struct is in the initialization expression of a variable, it gets named after that variable.
  • If the struct is in the return expression, it gets named after the function it is returning from, with the parameter values serialized.
  • Otherwise, the struct gets a name such as (filename.funcname.__struct_ID).
  • If the struct is declared inside another struct, it gets named after both the parent struct and the name inferred by the previous rules, separated by a dot.
struct_name.zig
const std = @import("std");

pub fn main() void {
    const Foo = struct {};
    std.debug.print("variable: {s}\n", .{@typeName(Foo)});
    std.debug.print("anonymous: {s}\n", .{@typeName(struct {})});
    std.debug.print("function: {s}\n", .{@typeName(List(i32))});
}

fn List(comptime T: type) type {
    return struct {
        x: T,
    };
}
Shell
$ zig build-exe struct_name.zig
$ ./struct_name
variable: struct_name.main.Foo
anonymous: struct_name.main__struct_3390
function: struct_name.List(i32)

Anonymous Struct Literals §

Zig allows omitting the struct type of a literal. When the result is coerced, the struct literal will directly instantiate the result location, with no copy:

test_struct_result.zig
const std = @import("std");
const expect = std.testing.expect;

const Point = struct {x: i32, y: i32};

test "anonymous struct literal" {
    const pt: Point = .{
        .x = 13,
        .y = 67,
    };
    try expect(pt.x == 13);
    try expect(pt.y == 67);
}
Shell
$ zig test test_struct_result.zig
1/1 test_struct_result.test.anonymous struct literal... OK
All 1 tests passed.

The struct type can be inferred. Here the result location does not include a type, and so Zig infers the type:

test_anonymous_struct.zig
const std = @import("std");
const expect = std.testing.expect;

test "fully anonymous struct" {
    try check(.{
        .int = @as(u32, 1234),
        .float = @as(f64, 12.34),
        .b = true,
        .s = "hi",
    });
}

fn check(args: anytype) !void {
    try expect(args.int == 1234);
    try expect(args.float == 12.34);
    try expect(args.b);
    try expect(args.s[0] == 'h');
    try expect(args.s[1] == 'i');
}
Shell
$ zig test test_anonymous_struct.zig
1/1 test_anonymous_struct.test.fully anonymous struct... OK
All 1 tests passed.

Tuples §

Anonymous structs can be created without specifying field names, and are referred to as "tuples".

The fields are implicitly named using numbers starting from 0. Because their names are integers, they cannot be accessed with . syntax without also wrapping them in @"". Names inside @"" are always recognised as identifiers.

Like arrays, tuples have a .len field, can be indexed (provided the index is comptime-known) and work with the ++ and ** operators. They can also be iterated over with inline for.

test_tuples.zig
const std = @import("std");
const expect = std.testing.expect;

test "tuple" {
    const values = .{
        @as(u32, 1234),
        @as(f64, 12.34),
        true,
        "hi",
    } ++ .{false} ** 2;
    try expect(values[0] == 1234);
    try expect(values[4] == false);
    inline for (values, 0..) |v, i| {
        if (i != 2) continue;
        try expect(v);
    }
    try expect(values.len == 6);
    try expect(values.@"3"[0] == 'h');
}
Shell
$ zig test test_tuples.zig
1/1 test_tuples.test.tuple... OK
All 1 tests passed.

See also:

enum §

test_enums.zig
const expect = @import("std").testing.expect;
const mem = @import("std").mem;

// Declare an enum.
const Type = enum {
    ok,
    not_ok,
};

// Declare a specific enum field.
const c = Type.ok;

// If you want access to the ordinal value of an enum, you
// can specify the tag type.
const Value = enum(u2) {
    zero,
    one,
    two,
};
// Now you can cast between u2 and Value.
// The ordinal value starts from 0, counting up by 1 from the previous member.
test "enum ordinal value" {
    try expect(@intFromEnum(Value.zero) == 0);
    try expect(@intFromEnum(Value.one) == 1);
    try expect(@intFromEnum(Value.two) == 2);
}

// You can override the ordinal value for an enum.
const Value2 = enum(u32) {
    hundred = 100,
    thousand = 1000,
    million = 1000000,
};
test "set enum ordinal value" {
    try expect(@intFromEnum(Value2.hundred) == 100);
    try expect(@intFromEnum(Value2.thousand) == 1000);
    try expect(@intFromEnum(Value2.million) == 1000000);
}

// You can also override only some values.
const Value3 = enum(u4) {
    a,
    b = 8,
    c,
    d = 4,
    e,
};
test "enum implicit ordinal values and overridden values" {
    try expect(@intFromEnum(Value3.a) == 0);
    try expect(@intFromEnum(Value3.b) == 8);
    try expect(@intFromEnum(Value3.c) == 9);
    try expect(@intFromEnum(Value3.d) == 4);
    try expect(@intFromEnum(Value3.e) == 5);
}

// Enums can have methods, the same as structs and unions.
// Enum methods are not special, they are only namespaced
// functions that you can call with dot syntax.
const Suit = enum {
    clubs,
    spades,
    diamonds,
    hearts,

    pub fn isClubs(self: Suit) bool {
        return self == Suit.clubs;
    }
};
test "enum method" {
    const p = Suit.spades;
    try expect(!p.isClubs());
}

// An enum can be switched upon.
const Foo = enum {
    string,
    number,
    none,
};
test "enum switch" {
    const p = Foo.number;
    const what_is_it = switch (p) {
        Foo.string => "this is a string",
        Foo.number => "this is a number",
        Foo.none => "this is a none",
    };
    try expect(mem.eql(u8, what_is_it, "this is a number"));
}

// @typeInfo can be used to access the integer tag type of an enum.
const Small = enum {
    one,
    two,
    three,
    four,
};
test "std.meta.Tag" {
    try expect(@typeInfo(Small).Enum.tag_type == u2);
}

// @typeInfo tells us the field count and the fields names:
test "@typeInfo" {
    try expect(@typeInfo(Small).Enum.fields.len == 4);
    try expect(mem.eql(u8, @typeInfo(Small).Enum.fields[1].name, "two"));
}

// @tagName gives a [:0]const u8 representation of an enum value:
test "@tagName" {
    try expect(mem.eql(u8, @tagName(Small.three), "three"));
}
Shell
$ zig test test_enums.zig
1/8 test_enums.test.enum ordinal value... OK
2/8 test_enums.test.set enum ordinal value... OK
3/8 test_enums.test.enum implicit ordinal values and overridden values... OK
4/8 test_enums.test.enum method... OK
5/8 test_enums.test.enum switch... OK
6/8 test_enums.test.std.meta.Tag... OK
7/8 test_enums.test.@typeInfo... OK
8/8 test_enums.test.@tagName... OK
All 8 tests passed.

See also:

extern enum §

By default, enums are not guaranteed to be compatible with the C ABI:

enum_export_error.zig
const Foo = enum { a, b, c };
export fn entry(foo: Foo) void { _ = foo; }
Shell
$ zig build-obj enum_export_error.zig
docgen_tmp/enum_export_error.zig:2:17: error: parameter of type 'enum_export_error.Foo' not allowed in function with calling convention 'C'
export fn entry(foo: Foo) void { _ = foo; }
                ^~~~~~~~
docgen_tmp/enum_export_error.zig:2:17: note: enum tag type 'u2' is not extern compatible
docgen_tmp/enum_export_error.zig:2:17: note: only integers with 0, 8, 16, 32, 64 and 128 bits are extern compatible
docgen_tmp/enum_export_error.zig:1:13: note: enum declared here
const Foo = enum { a, b, c };
            ^~~~~~~~~~~~~~~~

For a C-ABI-compatible enum, provide an explicit tag type to the enum:

enum_export.zig
const Foo = enum(c_int) { a, b, c };
export fn entry(foo: Foo) void { _ = foo; }
Shell
$ zig build-obj enum_export.zig

Enum Literals §

Enum literals allow specifying the name of an enum field without specifying the enum type:

test_enum_literals.zig
const std = @import("std");
const expect = std.testing.expect;

const Color = enum {
    auto,
    off,
    on,
};

test "enum literals" {
    const color1: Color = .auto;
    const color2 = Color.auto;
    try expect(color1 == color2);
}

test "switch using enum literals" {
    const color = Color.on;
    const result = switch (color) {
        .auto => false,
        .on => true,
        .off => false,
    };
    try expect(result);
}
Shell
$ zig test test_enum_literals.zig
1/2 test_enum_literals.test.enum literals... OK
2/2 test_enum_literals.test.switch using enum literals... OK
All 2 tests passed.

Non-exhaustive enum §

A non-exhaustive enum can be created by adding a trailing _ field. The enum must specify a tag type and cannot consume every enumeration value.

@enumFromInt on a non-exhaustive enum involves the safety semantics of @intCast to the integer tag type, but beyond that always results in a well-defined enum value.

A switch on a non-exhaustive enum can include a _ prong as an alternative to an else prong. With a _ prong the compiler errors if all the known tag names are not handled by the switch.

test_switch_non-exhaustive.zig
const std = @import("std");
const expect = std.testing.expect;

const Number = enum(u8) {
    one,
    two,
    three,
    _,
};

test "switch on non-exhaustive enum" {
    const number = Number.one;
    const result = switch (number) {
        .one => true,
        .two,
        .three => false,
        _ => false,
    };
    try expect(result);
    const is_one = switch (number) {
        .one => true,
        else => false,
    };
    try expect(is_one);
}
Shell
$ zig test test_switch_non-exhaustive.zig
1/1 test_switch_non-exhaustive.test.switch on non-exhaustive enum... OK
All 1 tests passed.

union §

A bare union defines a set of possible types that a value can be as a list of fields. Only one field can be active at a time. The in-memory representation of bare unions is not guaranteed. Bare unions cannot be used to reinterpret memory. For that, use @ptrCast, or use an extern union or a packed union which have guaranteed in-memory layout. Accessing the non-active field is safety-checked Undefined Behavior:

test_wrong_union_access.zig
const Payload = union {
    int: i64,
    float: f64,
    boolean: bool,
};
test "simple union" {
    var payload = Payload{ .int = 1234 };
    payload.float = 12.34;
}
Shell
$ zig test test_wrong_union_access.zig
1/1 test_wrong_union_access.test.simple union... thread 137228 panic: access of union field 'float' while field 'int' is active
/home/andy/src/zig-0.12.x/docgen_tmp/test_wrong_union_access.zig:8:12: 0x1039057 in test.simple union (test)
    payload.float = 12.34;
           ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:158:25: 0x104430d in mainTerminal (test)
        if (test_fn.func()) |_| {
                        ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:35:28: 0x103a24b in main (test)
        return mainTerminal();
                           ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x10395e9 in posixCallMainAndExit (test)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1039151 in _start (test)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
error: the following test command crashed:
/home/andy/src/zig-0.12.x/zig-cache/o/bb283d64abd3efd40e1c163f5874a313/test

You can activate another field by assigning the entire union:

test_simple_union.zig
const std = @import("std");
const expect = std.testing.expect;

const Payload = union {
    int: i64,
    float: f64,
    boolean: bool,
};
test "simple union" {
    var payload = Payload{ .int = 1234 };
    try expect(payload.int == 1234);
    payload = Payload{ .float = 12.34 };
    try expect(payload.float == 12.34);
}
Shell
$ zig test test_simple_union.zig
1/1 test_simple_union.test.simple union... OK
All 1 tests passed.

In order to use switch with a union, it must be a Tagged union.

To initialize a union when the tag is a comptime-known name, see @unionInit.

Tagged union §

Unions can be declared with an enum tag type. This turns the union into a tagged union, which makes it eligible to use with switch expressions. Tagged unions coerce to their tag type: Type Coercion: Unions and Enums.

test_tagged_union.zig
const std = @import("std");
const expect = std.testing.expect;

const ComplexTypeTag = enum {
    ok,
    not_ok,
};
const ComplexType = union(ComplexTypeTag) {
    ok: u8,
    not_ok: void,
};

test "switch on tagged union" {
    const c = ComplexType{ .ok = 42 };
    try expect(@as(ComplexTypeTag, c) == ComplexTypeTag.ok);

    switch (c) {
        ComplexTypeTag.ok => |value| try expect(value == 42),
        ComplexTypeTag.not_ok => unreachable,
    }
}

test "get tag type" {
    try expect(std.meta.Tag(ComplexType) == ComplexTypeTag);
}
Shell
$ zig test test_tagged_union.zig
1/2 test_tagged_union.test.switch on tagged union... OK
2/2 test_tagged_union.test.get tag type... OK
All 2 tests passed.

In order to modify the payload of a tagged union in a switch expression, place a * before the variable name to make it a pointer:

test_switch_modify_tagged_union.zig
const std = @import("std");
const expect = std.testing.expect;

const ComplexTypeTag = enum {
    ok,
    not_ok,
};
const ComplexType = union(ComplexTypeTag) {
    ok: u8,
    not_ok: void,
};

test "modify tagged union in switch" {
    var c = ComplexType{ .ok = 42 };

    switch (c) {
        ComplexTypeTag.ok => |*value| value.* += 1,
        ComplexTypeTag.not_ok => unreachable,
    }

    try expect(c.ok == 43);
}
Shell
$ zig test test_switch_modify_tagged_union.zig
1/1 test_switch_modify_tagged_union.test.modify tagged union in switch... OK
All 1 tests passed.

Unions can be made to infer the enum tag type. Further, unions can have methods just like structs and enums.

test_union_method.zig
const std = @import("std");
const expect = std.testing.expect;

const Variant = union(enum) {
    int: i32,
    boolean: bool,

    // void can be omitted when inferring enum tag type.
    none,

    fn truthy(self: Variant) bool {
        return switch (self) {
            Variant.int => |x_int| x_int != 0,
            Variant.boolean => |x_bool| x_bool,
            Variant.none => false,
        };
    }
};

test "union method" {
    var v1 = Variant{ .int = 1 };
    var v2 = Variant{ .boolean = false };

    try expect(v1.truthy());
    try expect(!v2.truthy());
}
Shell
$ zig test test_union_method.zig
1/1 test_union_method.test.union method... OK
All 1 tests passed.

@tagName can be used to return a comptime [:0]const u8 value representing the field name:

test_tagName.zig
const std = @import("std");
const expect = std.testing.expect;

const Small2 = union(enum) {
    a: i32,
    b: bool,
    c: u8,
};
test "@tagName" {
    try expect(std.mem.eql(u8, @tagName(Small2.a), "a"));
}
Shell
$ zig test test_tagName.zig
1/1 test_tagName.test.@tagName... OK
All 1 tests passed.

extern union §

An extern union has memory layout guaranteed to be compatible with the target C ABI.

See also:

packed union §

A packed union has well-defined in-memory layout and is eligible to be in a packed struct.

Anonymous Union Literals §

Anonymous Struct Literals syntax can be used to initialize unions without specifying the type:

test_anonymous_union.zig
const std = @import("std");
const expect = std.testing.expect;

const Number = union {
    int: i32,
    float: f64,
};

test "anonymous union literal syntax" {
    const i: Number = .{ .int = 42 };
    const f = makeNumber();
    try expect(i.int == 42);
    try expect(f.float == 12.34);
}

fn makeNumber() Number {
    return .{ .float = 12.34 };
}
Shell
$ zig test test_anonymous_union.zig
1/1 test_anonymous_union.test.anonymous union literal syntax... OK
All 1 tests passed.

opaque §

opaque {} declares a new type with an unknown (but non-zero) size and alignment. It can contain declarations the same as structs, unions, and enums.

This is typically used for type safety when interacting with C code that does not expose struct details. Example:

test_opaque.zig
const Derp = opaque {};
const Wat = opaque {};

extern fn bar(d: *Derp) void;
fn foo(w: *Wat) callconv(.C) void {
    bar(w);
}

test "call foo" {
    foo(undefined);
}
Shell
$ zig test test_opaque.zig
docgen_tmp/test_opaque.zig:6:9: error: expected type '*test_opaque.Derp', found '*test_opaque.Wat'
    bar(w);
        ^
docgen_tmp/test_opaque.zig:6:9: note: pointer type child 'test_opaque.Wat' cannot cast into pointer type child 'test_opaque.Derp'
docgen_tmp/test_opaque.zig:2:13: note: opaque declared here
const Wat = opaque {};
            ^~~~~~~~~
docgen_tmp/test_opaque.zig:1:14: note: opaque declared here
const Derp = opaque {};
             ^~~~~~~~~
docgen_tmp/test_opaque.zig:4:18: note: parameter type declared here
extern fn bar(d: *Derp) void;
                 ^~~~~
referenced by:
    test.call foo: docgen_tmp/test_opaque.zig:10:5
    remaining reference traces hidden; use '-freference-trace' to see all reference traces

Blocks §

Blocks are used to limit the scope of variable declarations:

test_blocks.zig
test "access variable after block scope" {
    {
        var x: i32 = 1;
        _ = &x;
    }
    x += 1;
}
Shell
$ zig test test_blocks.zig
docgen_tmp/test_blocks.zig:6:5: error: use of undeclared identifier 'x'
    x += 1;
    ^

Blocks are expressions. When labeled, break can be used to return a value from the block:

test_labeled_break.zig
const std = @import("std");
const expect = std.testing.expect;

test "labeled break from labeled block expression" {
    var y: i32 = 123;

    const x = blk: {
        y += 1;
        break :blk y;
    };
    try expect(x == 124);
    try expect(y == 124);
}
Shell
$ zig test test_labeled_break.zig
1/1 test_labeled_break.test.labeled break from labeled block expression... OK
All 1 tests passed.

Here, blk can be any name.

See also:

Shadowing §

Identifiers are never allowed to "hide" other identifiers by using the same name:

test_shadowing.zig
const pi = 3.14;

test "inside test block" {
    // Let's even go inside another block
    {
        var pi: i32 = 1234;
    }
}
Shell
$ zig test test_shadowing.zig
docgen_tmp/test_shadowing.zig:6:13: error: local variable shadows declaration of 'pi'
        var pi: i32 = 1234;
            ^~
docgen_tmp/test_shadowing.zig:1:1: note: declared here
const pi = 3.14;
^~~~~~~~~~~~~~~

Because of this, when you read Zig code you can always rely on an identifier to consistently mean the same thing within the scope it is defined. Note that you can, however, use the same name if the scopes are separate:

test_scopes.zig
test "separate scopes" {
    {
        const pi = 3.14;
        _ = pi;
    }
    {
        var pi: bool = true;
        _ = &pi;
    }
}
Shell
$ zig test test_scopes.zig
1/1 test_scopes.test.separate scopes... OK
All 1 tests passed.

Empty Blocks §

An empty block is equivalent to void{}:

test_empty_block.zig
const std = @import("std");
const expect = std.testing.expect;

test {
    const a = {};
    const b = void{};
    try expect(@TypeOf(a) == void);
    try expect(@TypeOf(b) == void);
    try expect(a == b);
}
Shell
$ zig test test_empty_block.zig
1/1 test_empty_block.test_0... OK
All 1 tests passed.

switch §

test_switch.zig
const std = @import("std");
const builtin = @import("builtin");
const expect = std.testing.expect;

test "switch simple" {
    const a: u64 = 10;
    const zz: u64 = 103;

    // All branches of a switch expression must be able to be coerced to a
    // common type.
    //
    // Branches cannot fallthrough. If fallthrough behavior is desired, combine
    // the cases and use an if.
    const b = switch (a) {
        // Multiple cases can be combined via a ','
        1, 2, 3 => 0,

        // Ranges can be specified using the ... syntax. These are inclusive
        // of both ends.
        5...100 => 1,

        // Branches can be arbitrarily complex.
        101 => blk: {
            const c: u64 = 5;
            break :blk c * 2 + 1;
        },

        // Switching on arbitrary expressions is allowed as long as the
        // expression is known at compile-time.
        zz => zz,
        blk: {
            const d: u32 = 5;
            const e: u32 = 100;
            break :blk d + e;
        } => 107,

        // The else branch catches everything not already captured.
        // Else branches are mandatory unless the entire range of values
        // is handled.
        else => 9,
    };

    try expect(b == 1);
}

// Switch expressions can be used outside a function:
const os_msg = switch (builtin.target.os.tag) {
    .linux => "we found a linux user",
    else => "not a linux user",
};

// Inside a function, switch statements implicitly are compile-time
// evaluated if the target expression is compile-time known.
test "switch inside function" {
    switch (builtin.target.os.tag) {
        .fuchsia => {
            // On an OS other than fuchsia, block is not even analyzed,
            // so this compile error is not triggered.
            // On fuchsia this compile error would be triggered.
            @compileError("fuchsia not supported");
        },
        else => {},
    }
}
Shell
$ zig test test_switch.zig
1/2 test_switch.test.switch simple... OK
2/2 test_switch.test.switch inside function... OK
All 2 tests passed.

switch can be used to capture the field values of a Tagged union. Modifications to the field values can be done by placing a * before the capture variable name, turning it into a pointer.

test_switch_tagged_union.zig
const expect = @import("std").testing.expect;

test "switch on tagged union" {
    const Point = struct {
        x: u8,
        y: u8,
    };
    const Item = union(enum) {
        a: u32,
        c: Point,
        d,
        e: u32,
    };

    var a = Item{ .c = Point{ .x = 1, .y = 2 } };

    // Switching on more complex enums is allowed.
    const b = switch (a) {
        // A capture group is allowed on a match, and will return the enum
        // value matched. If the payload types of both cases are the same
        // they can be put into the same switch prong.
        Item.a, Item.e => |item| item,

        // A reference to the matched value can be obtained using `*` syntax.
        Item.c => |*item| blk: {
            item.*.x += 1;
            break :blk 6;
        },

        // No else is required if the types cases was exhaustively handled
        Item.d => 8,
    };

    try expect(b == 6);
    try expect(a.c.x == 2);
}
Shell
$ zig test test_switch_tagged_union.zig
1/1 test_switch_tagged_union.test.switch on tagged union... OK
All 1 tests passed.

See also:

Exhaustive Switching §

When a switch expression does not have an else clause, it must exhaustively list all the possible values. Failure to do so is a compile error:

test_unhandled_enumeration_value.zig
const Color = enum {
    auto,
    off,
    on,
};

test "exhaustive switching" {
    const color = Color.off;
    switch (color) {
        Color.auto => {},
        Color.on => {},
    }
}
Shell
$ zig test test_unhandled_enumeration_value.zig
docgen_tmp/test_unhandled_enumeration_value.zig:9:5: error: switch must handle all possibilities
    switch (color) {
    ^~~~~~
docgen_tmp/test_unhandled_enumeration_value.zig:3:5: note: unhandled enumeration value: 'off'
    off,
    ^~~
docgen_tmp/test_unhandled_enumeration_value.zig:1:15: note: enum 'test_unhandled_enumeration_value.Color' declared here
const Color = enum {
              ^~~~

Switching with Enum Literals §

Enum Literals can be useful to use with switch to avoid repetitively specifying enum or union types:

test_exhaustive_switch.zig
const std = @import("std");
const expect = std.testing.expect;

const Color = enum {
    auto,
    off,
    on,
};

test "enum literals with switch" {
    const color = Color.off;
    const result = switch (color) {
        .auto => false,
        .on => false,
        .off => true,
    };
    try expect(result);
}
Shell
$ zig test test_exhaustive_switch.zig
1/1 test_exhaustive_switch.test.enum literals with switch... OK
All 1 tests passed.

Inline Switch Prongs §

Switch prongs can be marked as inline to generate the prong's body for each possible value it could have, making the captured value comptime.

test_inline_switch.zig
const std = @import("std");
const expect = std.testing.expect;
const expectError = std.testing.expectError;

fn isFieldOptional(comptime T: type, field_index: usize) !bool {
    const fields = @typeInfo(T).Struct.fields;
    return switch (field_index) {
        // This prong is analyzed twice with `idx` being a
        // comptime-known value each time.
        inline 0, 1 => |idx| @typeInfo(fields[idx].type) == .Optional,
        else => return error.IndexOutOfBounds,
    };
}

const Struct1 = struct { a: u32, b: ?u32 };

test "using @typeInfo with runtime values" {
    var index: usize = 0;
    try expect(!try isFieldOptional(Struct1, index));
    index += 1;
    try expect(try isFieldOptional(Struct1, index));
    index += 1;
    try expectError(error.IndexOutOfBounds, isFieldOptional(Struct1, index));
}

// Calls to `isFieldOptional` on `Struct1` get unrolled to an equivalent
// of this function:
fn isFieldOptionalUnrolled(field_index: usize) !bool {
    return switch (field_index) {
        0 => false,
        1 => true,
        else => return error.IndexOutOfBounds,
    };
}
Shell
$ zig test test_inline_switch.zig
1/1 test_inline_switch.test.using @typeInfo with runtime values... OK
All 1 tests passed.

The inline keyword may also be combined with ranges:

inline_prong_range.zig
fn isFieldOptional(comptime T: type, field_index: usize) !bool {
    const fields = @typeInfo(T).Struct.fields;
    return switch (field_index) {
        inline 0...fields.len - 1 => |idx| @typeInfo(fields[idx].type) == .Optional,
        else => return error.IndexOutOfBounds,
    };
}

inline else prongs can be used as a type safe alternative to inline for loops:

test_inline_else.zig
const std = @import("std");
const expect = std.testing.expect;

const SliceTypeA = extern struct {
    len: usize,
    ptr: [*]u32,
};
const SliceTypeB = extern struct {
    ptr: [*]SliceTypeA,
    len: usize,
};
const AnySlice = union(enum) {
    a: SliceTypeA,
    b: SliceTypeB,
    c: []const u8,
    d: []AnySlice,
};

fn withFor(any: AnySlice) usize {
    const Tag = @typeInfo(AnySlice).Union.tag_type.?;
    inline for (@typeInfo(Tag).Enum.fields) |field| {
        // With `inline for` the function gets generated as
        // a series of `if` statements relying on the optimizer
        // to convert it to a switch.
        if (field.value == @intFromEnum(any)) {
            return @field(any, field.name).len;
        }
    }
    // When using `inline for` the compiler doesn't know that every
    // possible case has been handled requiring an explicit `unreachable`.
    unreachable;
}

fn withSwitch(any: AnySlice) usize {
    return switch (any) {
        // With `inline else` the function is explicitly generated
        // as the desired switch and the compiler can check that
        // every possible case is handled.
        inline else => |slice| slice.len,
    };
}

test "inline for and inline else similarity" {
    const any = AnySlice{ .c = "hello" };
    try expect(withFor(any) == 5);
    try expect(withSwitch(any) == 5);
}
Shell
$ zig test test_inline_else.zig
1/1 test_inline_else.test.inline for and inline else similarity... OK
All 1 tests passed.

When using an inline prong switching on an union an additional capture can be used to obtain the union's enum tag value.

test_inline_switch_union_tag.zig
const std = @import("std");
const expect = std.testing.expect;

const U = union(enum) {
    a: u32,
    b: f32,
};

fn getNum(u: U) u32 {
    switch (u) {
        // Here `num` is a runtime-known value that is either
        // `u.a` or `u.b` and `tag` is `u`'s comptime-known tag value.
        inline else => |num, tag| {
            if (tag == .b) {
                return @intFromFloat(num);
            }
            return num;
        }
    }
}

test "test" {
    const u = U{ .b = 42 };
    try expect(getNum(u) == 42);
}
Shell
$ zig test test_inline_switch_union_tag.zig
1/1 test_inline_switch_union_tag.test.test... OK
All 1 tests passed.

See also:

while §

A while loop is used to repeatedly execute an expression until some condition is no longer true.

test_while.zig
const expect = @import("std").testing.expect;

test "while basic" {
    var i: usize = 0;
    while (i < 10) {
        i += 1;
    }
    try expect(i == 10);
}
Shell
$ zig test test_while.zig
1/1 test_while.test.while basic... OK
All 1 tests passed.

Use break to exit a while loop early.

test_while_break.zig
const expect = @import("std").testing.expect;

test "while break" {
    var i: usize = 0;
    while (true) {
        if (i == 10)
            break;
        i += 1;
    }
    try expect(i == 10);
}
Shell
$ zig test test_while_break.zig
1/1 test_while_break.test.while break... OK
All 1 tests passed.

Use continue to jump back to the beginning of the loop.

test_while_continue.zig
const expect = @import("std").testing.expect;

test "while continue" {
    var i: usize = 0;
    while (true) {
        i += 1;
        if (i < 10)
            continue;
        break;
    }
    try expect(i == 10);
}
Shell
$ zig test test_while_continue.zig
1/1 test_while_continue.test.while continue... OK
All 1 tests passed.

While loops support a continue expression which is executed when the loop is continued. The continue keyword respects this expression.

test_while_continue_expression.zig
const expect = @import("std").testing.expect;

test "while loop continue expression" {
    var i: usize = 0;
    while (i < 10) : (i += 1) {}
    try expect(i == 10);
}

test "while loop continue expression, more complicated" {
    var i: usize = 1;
    var j: usize = 1;
    while (i * j < 2000) : ({ i *= 2; j *= 3; }) {
        const my_ij = i * j;
        try expect(my_ij < 2000);
    }
}
Shell
$ zig test test_while_continue_expression.zig
1/2 test_while_continue_expression.test.while loop continue expression... OK
2/2 test_while_continue_expression.test.while loop continue expression, more complicated... OK
All 2 tests passed.

While loops are expressions. The result of the expression is the result of the else clause of a while loop, which is executed when the condition of the while loop is tested as false.

break, like return, accepts a value parameter. This is the result of the while expression. When you break from a while loop, the else branch is not evaluated.

test_while_else.zig
const expect = @import("std").testing.expect;

test "while else" {
    try expect(rangeHasNumber(0, 10, 5));
    try expect(!rangeHasNumber(0, 10, 15));
}

fn rangeHasNumber(begin: usize, end: usize, number: usize) bool {
    var i = begin;
    return while (i < end) : (i += 1) {
        if (i == number) {
            break true;
        }
    } else false;
}
Shell
$ zig test test_while_else.zig
1/1 test_while_else.test.while else... OK
All 1 tests passed.

Labeled while §

When a while loop is labeled, it can be referenced from a break or continue from within a nested loop:

test_while_nested_break.zig
test "nested break" {
    outer: while (true) {
        while (true) {
            break :outer;
        }
    }
}

test "nested continue" {
    var i: usize = 0;
    outer: while (i < 10) : (i += 1) {
        while (true) {
            continue :outer;
        }
    }
}
Shell
$ zig test test_while_nested_break.zig
1/2 test_while_nested_break.test.nested break... OK
2/2 test_while_nested_break.test.nested continue... OK
All 2 tests passed.

while with Optionals §

Just like if expressions, while loops can take an optional as the condition and capture the payload. When null is encountered the loop exits.

When the |x| syntax is present on a while expression, the while condition must have an Optional Type.

The else branch is allowed on optional iteration. In this case, it will be executed on the first null value encountered.

test_while_null_capture.zig
const expect = @import("std").testing.expect;

test "while null capture" {
    var sum1: u32 = 0;
    numbers_left = 3;
    while (eventuallyNullSequence()) |value| {
        sum1 += value;
    }
    try expect(sum1 == 3);

    // null capture with an else block
    var sum2: u32 = 0;
    numbers_left = 3;
    while (eventuallyNullSequence()) |value| {
        sum2 += value;
    } else {
        try expect(sum2 == 3);
    }

    // null capture with a continue expression
    var i: u32 = 0;
    var sum3: u32 = 0;
    numbers_left = 3;
    while (eventuallyNullSequence()) |value| : (i += 1) {
        sum3 += value;
    }
    try expect(i == 3);
}

var numbers_left: u32 = undefined;
fn eventuallyNullSequence() ?u32 {
    return if (numbers_left == 0) null else blk: {
        numbers_left -= 1;
        break :blk numbers_left;
    };
}
Shell
$ zig test test_while_null_capture.zig
1/1 test_while_null_capture.test.while null capture... OK
All 1 tests passed.

while with Error Unions §

Just like if expressions, while loops can take an error union as the condition and capture the payload or the error code. When the condition results in an error code the else branch is evaluated and the loop is finished.

When the else |x| syntax is present on a while expression, the while condition must have an Error Union Type.

test_while_error_capture.zig
const expect = @import("std").testing.expect;

test "while error union capture" {
    var sum1: u32 = 0;
    numbers_left = 3;
    while (eventuallyErrorSequence()) |value| {
        sum1 += value;
    } else |err| {
        try expect(err == error.ReachedZero);
    }
}

var numbers_left: u32 = undefined;

fn eventuallyErrorSequence() anyerror!u32 {
    return if (numbers_left == 0) error.ReachedZero else blk: {
        numbers_left -= 1;
        break :blk numbers_left;
    };
}
Shell
$ zig test test_while_error_capture.zig
1/1 test_while_error_capture.test.while error union capture... OK
All 1 tests passed.

inline while §

While loops can be inlined. This causes the loop to be unrolled, which allows the code to do some things which only work at compile time, such as use types as first class values.

test_inline_while.zig
const expect = @import("std").testing.expect;

test "inline while loop" {
    comptime var i = 0;
    var sum: usize = 0;
    inline while (i < 3) : (i += 1) {
        const T = switch (i) {
            0 => f32,
            1 => i8,
            2 => bool,
            else => unreachable,
        };
        sum += typeNameLength(T);
    }
    try expect(sum == 9);
}

fn typeNameLength(comptime T: type) usize {
    return @typeName(T).len;
}
Shell
$ zig test test_inline_while.zig
1/1 test_inline_while.test.inline while loop... OK
All 1 tests passed.

It is recommended to use inline loops only for one of these reasons:

  • You need the loop to execute at comptime for the semantics to work.
  • You have a benchmark to prove that forcibly unrolling the loop in this way is measurably faster.

See also:

for §

test_for.zig
const expect = @import("std").testing.expect;

test "for basics" {
    const items = [_]i32 { 4, 5, 3, 4, 0 };
    var sum: i32 = 0;

    // For loops iterate over slices and arrays.
    for (items) |value| {
        // Break and continue are supported.
        if (value == 0) {
            continue;
        }
        sum += value;
    }
    try expect(sum == 16);

    // To iterate over a portion of a slice, reslice.
    for (items[0..1]) |value| {
        sum += value;
    }
    try expect(sum == 20);

    // To access the index of iteration, specify a second condition as well
    // as a second capture value.
    var sum2: i32 = 0;
    for (items, 0..) |_, i| {
        try expect(@TypeOf(i) == usize);
        sum2 += @as(i32, @intCast(i));
    }
    try expect(sum2 == 10);

    // To iterate over consecutive integers, use the range syntax.
    // Unbounded range is always a compile error.
    var sum3 : usize = 0;
    for (0..5) |i| {
        sum3 += i;
    }
    try expect(sum3 == 10);
}

test "multi object for" {
    const items = [_]usize{ 1, 2, 3 };
    const items2 = [_]usize{ 4, 5, 6 };
    var count: usize = 0;

    // Iterate over multiple objects.
    // All lengths must be equal at the start of the loop, otherwise detectable
    // illegal behavior occurs.
    for (items, items2) |i, j| {
        count += i + j;
    }

    try expect(count == 21);
}

test "for reference" {
    var items = [_]i32{ 3, 4, 2 };

    // Iterate over the slice by reference by
    // specifying that the capture value is a pointer.
    for (&items) |*value| {
        value.* += 1;
    }

    try expect(items[0] == 4);
    try expect(items[1] == 5);
    try expect(items[2] == 3);
}

test "for else" {
    // For allows an else attached to it, the same as a while loop.
    const items = [_]?i32{ 3, 4, null, 5 };

    // For loops can also be used as expressions.
    // Similar to while loops, when you break from a for loop, the else branch is not evaluated.
    var sum: i32 = 0;
    const result = for (items) |value| {
        if (value != null) {
            sum += value.?;
        }
    } else blk: {
        try expect(sum == 12);
        break :blk sum;
    };
    try expect(result == 12);
}
Shell
$ zig test test_for.zig
1/4 test_for.test.for basics... OK
2/4 test_for.test.multi object for... OK
3/4 test_for.test.for reference... OK
4/4 test_for.test.for else... OK
All 4 tests passed.

Labeled for §

When a for loop is labeled, it can be referenced from a break or continue from within a nested loop:

test_for_nested_break.zig
const std = @import("std");
const expect = std.testing.expect;

test "nested break" {
    var count: usize = 0;
    outer: for (1..6) |_| {
        for (1..6) |_| {
            count += 1;
            break :outer;
        }
    }
    try expect(count == 1);
}

test "nested continue" {
    var count: usize = 0;
    outer: for (1..9) |_| {
        for (1..6) |_| {
            count += 1;
            continue :outer;
        }
    }

    try expect(count == 8);
}
Shell
$ zig test test_for_nested_break.zig
1/2 test_for_nested_break.test.nested break... OK
2/2 test_for_nested_break.test.nested continue... OK
All 2 tests passed.

inline for §

For loops can be inlined. This causes the loop to be unrolled, which allows the code to do some things which only work at compile time, such as use types as first class values. The capture value and iterator value of inlined for loops are compile-time known.

test_inline_for.zig
const expect = @import("std").testing.expect;

test "inline for loop" {
    const nums = [_]i32{2, 4, 6};
    var sum: usize = 0;
    inline for (nums) |i| {
        const T = switch (i) {
            2 => f32,
            4 => i8,
            6 => bool,
            else => unreachable,
        };
        sum += typeNameLength(T);
    }
    try expect(sum == 9);
}

fn typeNameLength(comptime T: type) usize {
    return @typeName(T).len;
}
Shell
$ zig test test_inline_for.zig
1/1 test_inline_for.test.inline for loop... OK
All 1 tests passed.

It is recommended to use inline loops only for one of these reasons:

  • You need the loop to execute at comptime for the semantics to work.
  • You have a benchmark to prove that forcibly unrolling the loop in this way is measurably faster.

See also:

if §

test_if.zig
// If expressions have three uses, corresponding to the three types:
// * bool
// * ?T
// * anyerror!T

const expect = @import("std").testing.expect;

test "if expression" {
    // If expressions are used instead of a ternary expression.
    const a: u32 = 5;
    const b: u32 = 4;
    const result = if (a != b) 47 else 3089;
    try expect(result == 47);
}

test "if boolean" {
    // If expressions test boolean conditions.
    const a: u32 = 5;
    const b: u32 = 4;
    if (a != b) {
        try expect(true);
    } else if (a == 9) {
        unreachable;
    } else {
        unreachable;
    }
}

test "if error union" {
    // If expressions test for errors.
    // Note the |err| capture on the else.

    const a: anyerror!u32 = 0;
    if (a) |value| {
        try expect(value == 0);
    } else |err| {
        _ = err;
        unreachable;
    }

    const b: anyerror!u32 = error.BadValue;
    if (b) |value| {
        _ = value;
        unreachable;
    } else |err| {
        try expect(err == error.BadValue);
    }

    // The else and |err| capture is strictly required.
    if (a) |value| {
        try expect(value == 0);
    } else |_| {}

    // To check only the error value, use an empty block expression.
    if (b) |_| {} else |err| {
        try expect(err == error.BadValue);
    }

    // Access the value by reference using a pointer capture.
    var c: anyerror!u32 = 3;
    if (c) |*value| {
        value.* = 9;
    } else |_| {
        unreachable;
    }

    if (c) |value| {
        try expect(value == 9);
    } else |_| {
        unreachable;
    }
}
Shell
$ zig test test_if.zig
1/3 test_if.test.if expression... OK
2/3 test_if.test.if boolean... OK
3/3 test_if.test.if error union... OK
All 3 tests passed.

if with Optionals §

test_if_optionals.zig
const expect = @import("std").testing.expect;

test "if optional" {
    // If expressions test for null.

    const a: ?u32 = 0;
    if (a) |value| {
        try expect(value == 0);
    } else {
        unreachable;
    }

    const b: ?u32 = null;
    if (b) |_| {
        unreachable;
    } else {
        try expect(true);
    }

    // The else is not required.
    if (a) |value| {
        try expect(value == 0);
    }

    // To test against null only, use the binary equality operator.
    if (b == null) {
        try expect(true);
    }

    // Access the value by reference using a pointer capture.
    var c: ?u32 = 3;
    if (c) |*value| {
        value.* = 2;
    }

    if (c) |value| {
        try expect(value == 2);
    } else {
        unreachable;
    }
}

test "if error union with optional" {
    // If expressions test for errors before unwrapping optionals.
    // The |optional_value| capture's type is ?u32.

    const a: anyerror!?u32 = 0;
    if (a) |optional_value| {
        try expect(optional_value.? == 0);
    } else |err| {
        _ = err;
        unreachable;
    }

    const b: anyerror!?u32 = null;
    if (b) |optional_value| {
        try expect(optional_value == null);
    } else |_| {
        unreachable;
    }

    const c: anyerror!?u32 = error.BadValue;
    if (c) |optional_value| {
        _ = optional_value;
        unreachable;
    } else |err| {
        try expect(err == error.BadValue);
    }

    // Access the value by reference by using a pointer capture each time.
    var d: anyerror!?u32 = 3;
    if (d) |*optional_value| {
        if (optional_value.*) |*value| {
            value.* = 9;
        }
    } else |_| {
        unreachable;
    }

    if (d) |optional_value| {
        try expect(optional_value.? == 9);
    } else |_| {
        unreachable;
    }
}
Shell
$ zig test test_if_optionals.zig
1/2 test_if_optionals.test.if optional... OK
2/2 test_if_optionals.test.if error union with optional... OK
All 2 tests passed.

See also:

defer §

Executes an expression unconditionally at scope exit.

test_defer.zig
const std = @import("std");
const expect = std.testing.expect;
const print = std.debug.print;

fn deferExample() !usize {
    var a: usize = 1;

    {
        defer a = 2;
        a = 1;
    }
    try expect(a == 2);

    a = 5;
    return a;
}

test "defer basics" {
    try expect((try deferExample()) == 5);
}
Shell
$ zig test test_defer.zig
1/1 test_defer.test.defer basics... OK
All 1 tests passed.

Defer expressions are evaluated in reverse order.

defer_unwind.zig
const std = @import("std");
const expect = std.testing.expect;
const print = std.debug.print;

test "defer unwinding" {
    print("\n", .{});

    defer {
        print("1 ", .{});
    }
    defer {
        print("2 ", .{});
    }
    if (false) {
        // defers are not run if they are never executed.
        defer {
            print("3 ", .{});
        }
    }
}
Shell
$ zig test defer_unwind.zig
1/1 defer_unwind.test.defer unwinding...
2 1 OK
All 1 tests passed.

Inside a defer expression the return statement is not allowed.

test_invalid_defer.zig
fn deferInvalidExample() !void {
    defer {
        return error.DeferError;
    }

    return error.DeferError;
}
Shell
$ zig test test_invalid_defer.zig
docgen_tmp/test_invalid_defer.zig:3:9: error: cannot return from defer expression
        return error.DeferError;
        ^~~~~~~~~~~~~~~~~~~~~~~
docgen_tmp/test_invalid_defer.zig:2:5: note: defer expression here
    defer {
    ^~~~~

See also:

unreachable §

In Debug and ReleaseSafe mode unreachable emits a call to panic with the message reached unreachable code.

In ReleaseFast and ReleaseSmall mode, the optimizer uses the assumption that unreachable code will never be hit to perform optimizations.

Basics §

test_unreachable.zig
// unreachable is used to assert that control flow will never reach a
// particular location:
test "basic math" {
    const x = 1;
    const y = 2;
    if (x + y != 3) {
        unreachable;
    }
}
Shell
$ zig test test_unreachable.zig
1/1 test_unreachable.test.basic math... OK
All 1 tests passed.

In fact, this is how std.debug.assert is implemented:

test_assertion_failure.zig
// This is how std.debug.assert is implemented
fn assert(ok: bool) void {
    if (!ok) unreachable; // assertion failure
}

// This test will fail because we hit unreachable.
test "this will fail" {
    assert(false);
}
Shell
$ zig test test_assertion_failure.zig
1/1 test_assertion_failure.test.this will fail... thread 139247 panic: reached unreachable code
/home/andy/src/zig-0.12.x/docgen_tmp/test_assertion_failure.zig:3:14: 0x1038f6d in assert (test)
    if (!ok) unreachable; // assertion failure
             ^
/home/andy/src/zig-0.12.x/docgen_tmp/test_assertion_failure.zig:8:11: 0x1038f2a in test.this will fail (test)
    assert(false);
          ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:158:25: 0x1043c4d in mainTerminal (test)
        if (test_fn.func()) |_| {
                        ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:35:28: 0x1039d8b in main (test)
        return mainTerminal();
                           ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x1039419 in posixCallMainAndExit (test)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1038f81 in _start (test)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
error: the following test command crashed:
/home/andy/src/zig-0.12.x/zig-cache/o/6527cde54ef2a1a9e2f68ec248fe7641/test

At Compile-Time §

test_comptime_unreachable.zig
const assert = @import("std").debug.assert;

test "type of unreachable" {
    comptime {
        // The type of unreachable is noreturn.

        // However this assertion will still fail to compile because
        // unreachable expressions are compile errors.

        assert(@TypeOf(unreachable) == noreturn);
    }
}
Shell
$ zig test test_comptime_unreachable.zig
docgen_tmp/test_comptime_unreachable.zig:10:16: error: unreachable code
        assert(@TypeOf(unreachable) == noreturn);
               ^~~~~~~~~~~~~~~~~~~~
docgen_tmp/test_comptime_unreachable.zig:10:24: note: control flow is diverted here
        assert(@TypeOf(unreachable) == noreturn);
                       ^~~~~~~~~~~

See also:

noreturn §

noreturn is the type of:

  • break
  • continue
  • return
  • unreachable
  • while (true) {}

When resolving types together, such as if clauses or switch prongs, the noreturn type is compatible with every other type. Consider:

test_noreturn.zig
fn foo(condition: bool, b: u32) void {
    const a = if (condition) b else return;
    _ = a;
    @panic("do something with a");
}
test "noreturn" {
    foo(false, 1);
}
Shell
$ zig test test_noreturn.zig
1/1 test_noreturn.test.noreturn... OK
All 1 tests passed.

Another use case for noreturn is the exit function:

test_noreturn_from_exit.zig
const std = @import("std");
const builtin = @import("builtin");
const native_arch = builtin.cpu.arch;
const expect = std.testing.expect;

const WINAPI: std.builtin.CallingConvention = if (native_arch == .x86) .Stdcall else .C;
extern "kernel32" fn ExitProcess(exit_code: c_uint) callconv(WINAPI) noreturn;

test "foo" {
    const value = bar() catch ExitProcess(1);
    try expect(value == 1234);
}

fn bar() anyerror!u32 {
    return 1234;
}
Shell
$ zig test test_noreturn_from_exit.zig -target x86_64-windows --test-no-exec

Functions §

test_functions.zig
const std = @import("std");
const builtin = @import("builtin");
const native_arch = builtin.cpu.arch;
const expect = std.testing.expect;

// Functions are declared like this
fn add(a: i8, b: i8) i8 {
    if (a == 0) {
        return b;
    }

    return a + b;
}

// The export specifier makes a function externally visible in the generated
// object file, and makes it use the C ABI.
export fn sub(a: i8, b: i8) i8 { return a - b; }

// The extern specifier is used to declare a function that will be resolved
// at link time, when linking statically, or at runtime, when linking
// dynamically. The quoted identifier after the extern keyword specifies
// the library that has the function. (e.g. "c" -> libc.so)
// The callconv specifier changes the calling convention of the function.
const WINAPI: std.builtin.CallingConvention = if (native_arch == .x86) .Stdcall else .C;
extern "kernel32" fn ExitProcess(exit_code: u32) callconv(WINAPI) noreturn;
extern "c" fn atan2(a: f64, b: f64) f64;

// The @setCold builtin tells the optimizer that a function is rarely called.
fn abort() noreturn {
    @setCold(true);
    while (true) {}
}

// The naked calling convention makes a function not have any function prologue or epilogue.
// This can be useful when integrating with assembly.
fn _start() callconv(.Naked) noreturn {
    abort();
}

// The inline calling convention forces a function to be inlined at all call sites.
// If the function cannot be inlined, it is a compile-time error.
fn shiftLeftOne(a: u32) callconv(.Inline) u32 {
    return a << 1;
}

// The pub specifier allows the function to be visible when importing.
// Another file can use @import and call sub2
pub fn sub2(a: i8, b: i8) i8 { return a - b; }

// Function pointers are prefixed with `*const `.
const Call2Op = *const fn (a: i8, b: i8) i8;
fn doOp(fnCall: Call2Op, op1: i8, op2: i8) i8 {
    return fnCall(op1, op2);
}

test "function" {
    try expect(doOp(add, 5, 6) == 11);
    try expect(doOp(sub2, 5, 6) == -1);
}
Shell
$ zig test test_functions.zig
1/1 test_functions.test.function... OK
All 1 tests passed.

There is a difference between a function body and a function pointer. Function bodies are comptime-only types while function Pointers may be runtime-known.

Pass-by-value Parameters §

Primitive types such as Integers and Floats passed as parameters are copied, and then the copy is available in the function body. This is called "passing by value". Copying a primitive type is essentially free and typically involves nothing more than setting a register.

Structs, unions, and arrays can sometimes be more efficiently passed as a reference, since a copy could be arbitrarily expensive depending on the size. When these types are passed as parameters, Zig may choose to copy and pass by value, or pass by reference, whichever way Zig decides will be faster. This is made possible, in part, by the fact that parameters are immutable.

test_pass_by_reference_or_value.zig
const Point = struct {
    x: i32,
    y: i32,
};

fn foo(point: Point) i32 {
    // Here, `point` could be a reference, or a copy. The function body
    // can ignore the difference and treat it as a value. Be very careful
    // taking the address of the parameter - it should be treated as if
    // the address will become invalid when the function returns.
    return point.x + point.y;
}

const expect = @import("std").testing.expect;

test "pass struct to function" {
    try expect(foo(Point{ .x = 1, .y = 2 }) == 3);
}
Shell
$ zig test test_pass_by_reference_or_value.zig
1/1 test_pass_by_reference_or_value.test.pass struct to function... OK
All 1 tests passed.

For extern functions, Zig follows the C ABI for passing structs and unions by value.

Function Parameter Type Inference §

Function parameters can be declared with anytype in place of the type. In this case the parameter types will be inferred when the function is called. Use @TypeOf and @typeInfo to get information about the inferred type.

test_fn_type_inference.zig
const expect = @import("std").testing.expect;

fn addFortyTwo(x: anytype) @TypeOf(x) {
    return x + 42;
}

test "fn type inference" {
    try expect(addFortyTwo(1) == 43);
    try expect(@TypeOf(addFortyTwo(1)) == comptime_int);
    const y: i64 = 2;
    try expect(addFortyTwo(y) == 44);
    try expect(@TypeOf(addFortyTwo(y)) == i64);
}
Shell
$ zig test test_fn_type_inference.zig
1/1 test_fn_type_inference.test.fn type inference... OK
All 1 tests passed.

inline fn §

Adding the inline keyword to a function definition makes that function become semantically inlined at the callsite. This is not a hint to be possibly observed by optimization passes, but has implications on the types and values involved in the function call.

Unlike normal function calls, arguments at an inline function callsite which are compile-time known are treated as Compile Time Parameters. This can potentially propagate all the way to the return value:

inline_call.zig
test "inline function call" {
    if (foo(1200, 34) != 1234) {
        @compileError("bad");
    }
}

inline fn foo(a: i32, b: i32) i32 {
    return a + b;
}
Shell
$ zig test inline_call.zig
1/1 inline_call.test.inline function call... OK
All 1 tests passed.

If inline is removed, the test fails with the compile error instead of passing.

It is generally better to let the compiler decide when to inline a function, except for these scenarios:

  • To change how many stack frames are in the call stack, for debugging purposes.
  • To force comptime-ness of the arguments to propagate to the return value of the function, as in the above example.
  • Real world performance measurements demand it.

Note that inline actually restricts what the compiler is allowed to do. This can harm binary size, compilation speed, and even runtime performance.

Function Reflection §

test_fn_reflection.zig
const std = @import("std");
const math = std.math;
const testing = std.testing;

test "fn reflection" {
    try testing.expect(@typeInfo(@TypeOf(testing.expect)).Fn.params[0].type.? == bool);
    try testing.expect(@typeInfo(@TypeOf(testing.tmpDir)).Fn.return_type.? == testing.TmpDir);

    try testing.expect(@typeInfo(@TypeOf(math.Log2Int)).Fn.is_generic);
}
Shell
$ zig test test_fn_reflection.zig
1/1 test_fn_reflection.test.fn reflection... OK
All 1 tests passed.

Errors §

Error Set Type §

An error set is like an enum. However, each error name across the entire compilation gets assigned an unsigned integer greater than 0. You are allowed to declare the same error name more than once, and if you do, it gets assigned the same integer value.

The error set type defaults to a u16, though if the maximum number of distinct error values is provided via the --error-limit [num] command line parameter an integer type with the minimum number of bits required to represent all of the error values will be used.

You can coerce an error from a subset to a superset:

test_coerce_error_subset_to_superset.zig
const std = @import("std");

const FileOpenError = error {
    AccessDenied,
    OutOfMemory,
    FileNotFound,
};

const AllocationError = error {
    OutOfMemory,
};

test "coerce subset to superset" {
    const err = foo(AllocationError.OutOfMemory);
    try std.testing.expect(err == FileOpenError.OutOfMemory);
}

fn foo(err: AllocationError) FileOpenError {
    return err;
}
Shell
$ zig test test_coerce_error_subset_to_superset.zig
1/1 test_coerce_error_subset_to_superset.test.coerce subset to superset... OK
All 1 tests passed.

But you cannot coerce an error from a superset to a subset:

test_coerce_error_superset_to_subset.zig
const FileOpenError = error {
    AccessDenied,
    OutOfMemory,
    FileNotFound,
};

const AllocationError = error {
    OutOfMemory,
};

test "coerce superset to subset" {
    foo(FileOpenError.OutOfMemory) catch {};
}

fn foo(err: FileOpenError) AllocationError {
    return err;
}
Shell
$ zig test test_coerce_error_superset_to_subset.zig
docgen_tmp/test_coerce_error_superset_to_subset.zig:16:12: error: expected type 'error{OutOfMemory}', found 'error{AccessDenied,OutOfMemory,FileNotFound}'
    return err;
           ^~~
docgen_tmp/test_coerce_error_superset_to_subset.zig:16:12: note: 'error.AccessDenied' not a member of destination error set
docgen_tmp/test_coerce_error_superset_to_subset.zig:16:12: note: 'error.FileNotFound' not a member of destination error set
docgen_tmp/test_coerce_error_superset_to_subset.zig:15:28: note: function return type declared here
fn foo(err: FileOpenError) AllocationError {
                           ^~~~~~~~~~~~~~~
referenced by:
    test.coerce superset to subset: docgen_tmp/test_coerce_error_superset_to_subset.zig:12:5
    remaining reference traces hidden; use '-freference-trace' to see all reference traces

There is a shortcut for declaring an error set with only 1 value, and then getting that value:

single_value_error_set_shortcut.zig
const err = error.FileNotFound;

This is equivalent to:

single_value_error_set.zig
const err = (error {FileNotFound}).FileNotFound;

This becomes useful when using Inferred Error Sets.

The Global Error Set §

anyerror refers to the global error set. This is the error set that contains all errors in the entire compilation unit. It is a superset of all other error sets and a subset of none of them.

You can coerce any error set to the global one, and you can explicitly cast an error of the global error set to a non-global one. This inserts a language-level assert to make sure the error value is in fact in the destination error set.

The global error set should generally be avoided because it prevents the compiler from knowing what errors are possible at compile-time. Knowing the error set at compile-time is better for generated documentation and helpful error messages, such as forgetting a possible error value in a switch.

Error Union Type §

An error set type and normal type can be combined with the ! binary operator to form an error union type. You are likely to use an error union type more often than an error set type by itself.

Here is a function to parse a string into a 64-bit integer:

error_union_parsing_u64.zig
const std = @import("std");
const maxInt = std.math.maxInt;

pub fn parseU64(buf: []const u8, radix: u8) !u64 {
    var x: u64 = 0;

    for (buf) |c| {
        const digit = charToDigit(c);

        if (digit >= radix) {
            return error.InvalidChar;
        }

        // x *= radix
        var ov = @mulWithOverflow(x, radix);
        if (ov[1] != 0) return error.OverFlow;

        // x += digit
        ov = @addWithOverflow(ov[0], digit);
        if (ov[1] != 0) return error.OverFlow;
        x = ov[0];
    }

    return x;
}

fn charToDigit(c: u8) u8 {
    return switch (c) {
        '0' ... '9' => c - '0',
        'A' ... 'Z' => c - 'A' + 10,
        'a' ... 'z' => c - 'a' + 10,
        else => maxInt(u8),
    };
}

test "parse u64" {
    const result = try parseU64("1234", 10);
    try std.testing.expect(result == 1234);
}
Shell
$ zig test error_union_parsing_u64.zig
1/1 error_union_parsing_u64.test.parse u64... OK
All 1 tests passed.

Notice the return type is !u64. This means that the function either returns an unsigned 64 bit integer, or an error. We left off the error set to the left of the !, so the error set is inferred.

Within the function definition, you can see some return statements that return an error, and at the bottom a return statement that returns a u64. Both types coerce to anyerror!u64.

What it looks like to use this function varies depending on what you're trying to do. One of the following:

  • You want to provide a default value if it returned an error.
  • If it returned an error then you want to return the same error.
  • You know with complete certainty it will not return an error, so want to unconditionally unwrap it.
  • You want to take a different action for each possible error.

catch §

If you want to provide a default value, you can use the catch binary operator:

catch.zig
const parseU64 = @import("error_union_parsing_u64.zig").parseU64;

fn doAThing(str: []u8) void {
    const number = parseU64(str, 10) catch 13;
    _ = number; // ...
}

In this code, number will be equal to the successfully parsed string, or a default value of 13. The type of the right hand side of the binary catch operator must match the unwrapped error union type, or be of type noreturn.

If you want to provide a default value with catch after performing some logic, you can combine catch with named Blocks:

handle_error_with_catch_block.zig.zig
const parseU64 = @import("error_union_parsing_u64.zig").parseU64;

fn doAThing(str: []u8) void {
    const number = parseU64(str, 10) catch blk: {
        // do things
        break :blk 13;
    };
    _ = number; // number is now initialized
}

try §

Let's say you wanted to return the error if you got one, otherwise continue with the function logic:

catch_err_return.zig
const parseU64 = @import("error_union_parsing_u64.zig").parseU64;

fn doAThing(str: []u8) !void {
    const number = parseU64(str, 10) catch |err| return err;
    _ = number; // ...
}

There is a shortcut for this. The try expression:

try.zig
const parseU64 = @import("error_union_parsing_u64.zig").parseU64;

fn doAThing(str: []u8) !void {
    const number = try parseU64(str, 10);
    _ = number; // ...
}

try evaluates an error union expression. If it is an error, it returns from the current function with the same error. Otherwise, the expression results in the unwrapped value.

Maybe you know with complete certainty that an expression will never be an error. In this case you can do this:

const number = parseU64("1234", 10) catch unreachable;

Here we know for sure that "1234" will parse successfully. So we put the unreachable value on the right hand side. unreachable generates a panic in Debug and ReleaseSafe modes and undefined behavior in ReleaseFast and ReleaseSmall modes. So, while we're debugging the application, if there was a surprise error here, the application would crash appropriately.

You may want to take a different action for every situation. For that, we combine the if and switch expression:

handle_all_error_scenarios.zig
fn doAThing(str: []u8) void {
    if (parseU64(str, 10)) |number| {
        doSomethingWithNumber(number);
    } else |err| switch (err) {
        error.Overflow => {
            // handle overflow...
        },
        // we promise that InvalidChar won't happen (or crash in debug mode if it does)
        error.InvalidChar => unreachable,
    }
}

Finally, you may want to handle only some errors. For that, you can capture the unhandled errors in the else case, which now contains a narrower error set:

handle_some_error_scenarios.zig
fn doAnotherThing(str: []u8) error{InvalidChar}!void {
    if (parseU64(str, 10)) |number| {
        doSomethingWithNumber(number);
    } else |err| switch (err) {
        error.Overflow => {
            // handle overflow...
        },
        else => |leftover_err| return leftover_err,
    }
}

You must use the variable capture syntax. If you don't need the variable, you can capture with _ and avoid the switch.

handle_no_error_scenarios.zig
fn doADifferentThing(str: []u8) void {
    if (parseU64(str, 10)) |number| {
        doSomethingWithNumber(number);
    } else |_| {
        // do as you'd like
    }
}

errdefer §

The other component to error handling is defer statements. In addition to an unconditional defer, Zig has errdefer, which evaluates the deferred expression on block exit path if and only if the function returned with an error from the block.

Example:

errdefer_example.zig
fn createFoo(param: i32) !Foo {
    const foo = try tryToAllocateFoo();
    // now we have allocated foo. we need to free it if the function fails.
    // but we want to return it if the function succeeds.
    errdefer deallocateFoo(foo);

    const tmp_buf = allocateTmpBuffer() orelse return error.OutOfMemory;
    // tmp_buf is truly a temporary resource, and we for sure want to clean it up
    // before this block leaves scope
    defer deallocateTmpBuffer(tmp_buf);

    if (param > 1337) return error.InvalidParam;

    // here the errdefer will not run since we're returning success from the function.
    // but the defer will run!
    return foo;
}

The neat thing about this is that you get robust error handling without the verbosity and cognitive overhead of trying to make sure every exit path is covered. The deallocation code is always directly following the allocation code.

Common errdefer Slip-Ups §

It should be noted that errdefer statements only last until the end of the block they are written in, and therefore are not run if an error is returned outside of that block:

test_errdefer_slip_ups.zig
const std = @import("std");
const Allocator = std.mem.Allocator;

const Foo = struct {
    data: u32,
};

fn tryToAllocateFoo(allocator: Allocator) !*Foo {
    return allocator.create(Foo);
}

fn deallocateFoo(allocator: Allocator, foo: *Foo) void {
    allocator.destroy(foo);
}

fn getFooData() !u32 {
    return 666;
}

fn createFoo(allocator: Allocator, param: i32) !*Foo {
    const foo = getFoo: {
        var foo = try tryToAllocateFoo(allocator);
        errdefer deallocateFoo(allocator, foo); // Only lasts until the end of getFoo

        // Calls deallocateFoo on error
        foo.data = try getFooData();

        break :getFoo foo;
    };

    // Outside of the scope of the errdefer, so
    // deallocateFoo will not be called here
    if (param > 1337) return error.InvalidParam;

    return foo;
}

test "createFoo" {
    try std.testing.expectError(error.InvalidParam, createFoo(std.testing.allocator, 2468));
}
Shell
$ zig test test_errdefer_slip_ups.zig
1/1 test_errdefer_slip_ups.test.createFoo... OK
[gpa] (err): memory address 0x7feb84acb000 leaked:
/home/andy/src/zig-0.12.x/docgen_tmp/test_errdefer_slip_ups.zig:9:28: 0x103955f in tryToAllocateFoo (test)
    return allocator.create(Foo);
                           ^
/home/andy/src/zig-0.12.x/docgen_tmp/test_errdefer_slip_ups.zig:22:39: 0x1039775 in createFoo (test)
        var foo = try tryToAllocateFoo(allocator);
                                      ^
/home/andy/src/zig-0.12.x/docgen_tmp/test_errdefer_slip_ups.zig:39:62: 0x10399bd in test.createFoo (test)
    try std.testing.expectError(error.InvalidParam, createFoo(std.testing.allocator, 2468));
                                                             ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:158:25: 0x104951d in mainTerminal (test)
        if (test_fn.func()) |_| {
                        ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:35:28: 0x103f60b in main (test)
        return mainTerminal();
                           ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x103bbc9 in posixCallMainAndExit (test)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x103b731 in _start (test)
    asm volatile (switch (native_arch) {
    ^

All 1 tests passed.
1 errors were logged.
1 tests leaked memory.
error: the following test command failed with exit code 1:
/home/andy/src/zig-0.12.x/zig-cache/o/b1d3482e2572b8af2464d1432c18024d/test

To ensure that deallocateFoo is properly called when returning an error, you must add an errdefer outside of the block:

test_errdefer_block.zig
const std = @import("std");
const Allocator = std.mem.Allocator;

const Foo = struct {
    data: u32,
};

fn tryToAllocateFoo(allocator: Allocator) !*Foo {
    return allocator.create(Foo);
}

fn deallocateFoo(allocator: Allocator, foo: *Foo) void {
    allocator.destroy(foo);
}

fn getFooData() !u32 {
    return 666;
}

fn createFoo(allocator: Allocator, param: i32) !*Foo {
    const foo = getFoo: {
        var foo = try tryToAllocateFoo(allocator);
        errdefer deallocateFoo(allocator, foo);

        foo.data = try getFooData();

        break :getFoo foo;
    };
    // This lasts for the rest of the function
    errdefer deallocateFoo(allocator, foo);

    // Error is now properly handled by errdefer
    if (param > 1337) return error.InvalidParam;

    return foo;
}

test "createFoo" {
    try std.testing.expectError(error.InvalidParam, createFoo(std.testing.allocator, 2468));
}
Shell
$ zig test test_errdefer_block.zig
1/1 test_errdefer_block.test.createFoo... OK
All 1 tests passed.

The fact that errdefers only last for the block they are declared in is especially important when using loops:

test_errdefer_loop_leak.zig
const std = @import("std");
const Allocator = std.mem.Allocator;

const Foo = struct {
    data: *u32
};

fn getData() !u32 {
    return 666;
}

fn genFoos(allocator: Allocator, num: usize) ![]Foo {
    const foos = try allocator.alloc(Foo, num);
    errdefer allocator.free(foos);

    for (foos, 0..) |*foo, i| {
        foo.data = try allocator.create(u32);
        // This errdefer does not last between iterations
        errdefer allocator.destroy(foo.data);

        // The data for the first 3 foos will be leaked
        if(i >= 3) return error.TooManyFoos;

        foo.data.* = try getData();
    }

    return foos;
}

test "genFoos" {
    try std.testing.expectError(error.TooManyFoos, genFoos(std.testing.allocator, 5));
}
Shell
$ zig test test_errdefer_loop_leak.zig
1/1 test_errdefer_loop_leak.test.genFoos... OK
[gpa] (err): memory address 0x7f946e8d2000 leaked:
/home/andy/src/zig-0.12.x/docgen_tmp/test_errdefer_loop_leak.zig:17:40: 0x1039936 in genFoos (test)
        foo.data = try allocator.create(u32);
                                       ^
/home/andy/src/zig-0.12.x/docgen_tmp/test_errdefer_loop_leak.zig:31:59: 0x103a26d in test.genFoos (test)
    try std.testing.expectError(error.TooManyFoos, genFoos(std.testing.allocator, 5));
                                                          ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:158:25: 0x104a28d in mainTerminal (test)
        if (test_fn.func()) |_| {
                        ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:35:28: 0x10400ab in main (test)
        return mainTerminal();
                           ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x103c479 in posixCallMainAndExit (test)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x103bfe1 in _start (test)
    asm volatile (switch (native_arch) {
    ^

[gpa] (err): memory address 0x7f946e8d2004 leaked:
/home/andy/src/zig-0.12.x/docgen_tmp/test_errdefer_loop_leak.zig:17:40: 0x1039936 in genFoos (test)
        foo.data = try allocator.create(u32);
                                       ^
/home/andy/src/zig-0.12.x/docgen_tmp/test_errdefer_loop_leak.zig:31:59: 0x103a26d in test.genFoos (test)
    try std.testing.expectError(error.TooManyFoos, genFoos(std.testing.allocator, 5));
                                                          ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:158:25: 0x104a28d in mainTerminal (test)
        if (test_fn.func()) |_| {
                        ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:35:28: 0x10400ab in main (test)
        return mainTerminal();
                           ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x103c479 in posixCallMainAndExit (test)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x103bfe1 in _start (test)
    asm volatile (switch (native_arch) {
    ^

[gpa] (err): memory address 0x7f946e8d2008 leaked:
/home/andy/src/zig-0.12.x/docgen_tmp/test_errdefer_loop_leak.zig:17:40: 0x1039936 in genFoos (test)
        foo.data = try allocator.create(u32);
                                       ^
/home/andy/src/zig-0.12.x/docgen_tmp/test_errdefer_loop_leak.zig:31:59: 0x103a26d in test.genFoos (test)
    try std.testing.expectError(error.TooManyFoos, genFoos(std.testing.allocator, 5));
                                                          ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:158:25: 0x104a28d in mainTerminal (test)
        if (test_fn.func()) |_| {
                        ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:35:28: 0x10400ab in main (test)
        return mainTerminal();
                           ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x103c479 in posixCallMainAndExit (test)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x103bfe1 in _start (test)
    asm volatile (switch (native_arch) {
    ^

All 1 tests passed.
3 errors were logged.
1 tests leaked memory.
error: the following test command failed with exit code 1:
/home/andy/src/zig-0.12.x/zig-cache/o/aab7dd25878c1df87a33c5933b1f6acc/test

Special care must be taken with code that allocates in a loop to make sure that no memory is leaked when returning an error:

test_errdefer_loop.zig
const std = @import("std");
const Allocator = std.mem.Allocator;

const Foo = struct {
    data: *u32
};

fn getData() !u32 {
    return 666;
}

fn genFoos(allocator: Allocator, num: usize) ![]Foo {
    const foos = try allocator.alloc(Foo, num);
    errdefer allocator.free(foos);

    // Used to track how many foos have been initialized
    // (including their data being allocated)
    var num_allocated: usize = 0;
    errdefer for (foos[0..num_allocated]) |foo| {
        allocator.destroy(foo.data);
    };
    for (foos, 0..) |*foo, i| {
        foo.data = try allocator.create(u32);
        num_allocated += 1;

        if (i >= 3) return error.TooManyFoos;

        foo.data.* = try getData();
    }

    return foos;
}

test "genFoos" {
    try std.testing.expectError(error.TooManyFoos, genFoos(std.testing.allocator, 5));
}
Shell
$ zig test test_errdefer_loop.zig
1/1 test_errdefer_loop.test.genFoos... OK
All 1 tests passed.

A couple of other tidbits about error handling:

  • These primitives give enough expressiveness that it's completely practical to have failing to check for an error be a compile error. If you really want to ignore the error, you can add catch unreachable and get the added benefit of crashing in Debug and ReleaseSafe modes if your assumption was wrong.
  • Since Zig understands error types, it can pre-weight branches in favor of errors not occurring. Just a small optimization benefit that is not available in other languages.

See also:

An error union is created with the ! binary operator. You can use compile-time reflection to access the child type of an error union:

test_error_union.zig
const expect = @import("std").testing.expect;

test "error union" {
    var foo: anyerror!i32 = undefined;

    // Coerce from child type of an error union:
    foo = 1234;

    // Coerce from an error set:
    foo = error.SomeError;

    // Use compile-time reflection to access the payload type of an error union:
    try comptime expect(@typeInfo(@TypeOf(foo)).ErrorUnion.payload == i32);

    // Use compile-time reflection to access the error set type of an error union:
    try comptime expect(@typeInfo(@TypeOf(foo)).ErrorUnion.error_set == anyerror);
}
Shell
$ zig test test_error_union.zig
1/1 test_error_union.test.error union... OK
All 1 tests passed.

Merging Error Sets §

Use the || operator to merge two error sets together. The resulting error set contains the errors of both error sets. Doc comments from the left-hand side override doc comments from the right-hand side. In this example, the doc comments for C.PathNotFound is A doc comment.

This is especially useful for functions which return different error sets depending on comptime branches. For example, the Zig standard library uses LinuxFileOpenError || WindowsFileOpenError for the error set of opening files.

test_merging_error_sets.zig
const A = error{
    NotDir,

    /// A doc comment
    PathNotFound,
};
const B = error{
    OutOfMemory,

    /// B doc comment
    PathNotFound,
};

const C = A || B;

fn foo() C!void {
    return error.NotDir;
}

test "merge error sets" {
    if (foo()) {
        @panic("unexpected");
    } else |err| switch (err) {
        error.OutOfMemory => @panic("unexpected"),
        error.PathNotFound => @panic("unexpected"),
        error.NotDir => {},
    }
}
Shell
$ zig test test_merging_error_sets.zig
1/1 test_merging_error_sets.test.merge error sets... OK
All 1 tests passed.

Inferred Error Sets §

Because many functions in Zig return a possible error, Zig supports inferring the error set. To infer the error set for a function, prepend the ! operator to the function’s return type, like !T:

test_inferred_error_sets.zig
// With an inferred error set
pub fn add_inferred(comptime T: type, a: T, b: T) !T {
    const ov = @addWithOverflow(a, b);
    if (ov[1] != 0) return error.Overflow;
    return ov[0];
}

// With an explicit error set
pub fn add_explicit(comptime T: type, a: T, b: T) Error!T {
    const ov = @addWithOverflow(a, b);
    if (ov[1] != 0) return error.Overflow;
    return ov[0];
}

const Error = error {
    Overflow,
};

const std = @import("std");

test "inferred error set" {
    if (add_inferred(u8, 255, 1)) |_| unreachable else |err| switch (err) {
        error.Overflow => {}, // ok
    }
}
Shell
$ zig test test_inferred_error_sets.zig
1/1 test_inferred_error_sets.test.inferred error set... OK
All 1 tests passed.

When a function has an inferred error set, that function becomes generic and thus it becomes trickier to do certain things with it, such as obtain a function pointer, or have an error set that is consistent across different build targets. Additionally, inferred error sets are incompatible with recursion.

In these situations, it is recommended to use an explicit error set. You can generally start with an empty error set and let compile errors guide you toward completing the set.

These limitations may be overcome in a future version of Zig.

Error Return Traces §

Error Return Traces show all the points in the code that an error was returned to the calling function. This makes it practical to use try everywhere and then still be able to know what happened if an error ends up bubbling all the way out of your application.

error_return_trace.zig
pub fn main() !void {
    try foo(12);
}

fn foo(x: i32) !void {
    if (x >= 5) {
        try bar();
    } else {
        try bang2();
    }
}

fn bar() !void {
    if (baz()) {
        try quux();
    } else |err| switch (err) {
        error.FileNotFound => try hello(),
    }
}

fn baz() !void {
    try bang1();
}

fn quux() !void {
    try bang2();
}

fn hello() !void {
    try bang2();
}

fn bang1() !void {
    return error.FileNotFound;
}

fn bang2() !void {
    return error.PermissionDenied;
}
Shell
$ zig build-exe error_return_trace.zig
$ ./error_return_trace
error: PermissionDenied
/home/andy/src/zig-0.12.x/docgen_tmp/error_return_trace.zig:34:5: 0x1033a88 in bang1 (error_return_trace)
    return error.FileNotFound;
    ^
/home/andy/src/zig-0.12.x/docgen_tmp/error_return_trace.zig:22:5: 0x1033b93 in baz (error_return_trace)
    try bang1();
    ^
/home/andy/src/zig-0.12.x/docgen_tmp/error_return_trace.zig:38:5: 0x1033bb8 in bang2 (error_return_trace)
    return error.PermissionDenied;
    ^
/home/andy/src/zig-0.12.x/docgen_tmp/error_return_trace.zig:30:5: 0x1033c23 in hello (error_return_trace)
    try bang2();
    ^
/home/andy/src/zig-0.12.x/docgen_tmp/error_return_trace.zig:17:31: 0x1033cda in bar (error_return_trace)
        error.FileNotFound => try hello(),
                              ^
/home/andy/src/zig-0.12.x/docgen_tmp/error_return_trace.zig:7:9: 0x1033dc0 in foo (error_return_trace)
        try bar();
        ^
/home/andy/src/zig-0.12.x/docgen_tmp/error_return_trace.zig:2:5: 0x1033e18 in main (error_return_trace)
    try foo(12);
    ^

Look closely at this example. This is no stack trace.

You can see that the final error bubbled up was PermissionDenied, but the original error that started this whole thing was FileNotFound. In the bar function, the code handles the original error code, and then returns another one, from the switch statement. Error Return Traces make this clear, whereas a stack trace would look like this:

stack_trace.zig
pub fn main() void {
    foo(12);
}

fn foo(x: i32) void {
    if (x >= 5) {
        bar();
    } else {
        bang2();
    }
}

fn bar() void {
    if (baz()) {
        quux();
    } else {
        hello();
    }
}

fn baz() bool {
    return bang1();
}

fn quux() void {
    bang2();
}

fn hello() void {
    bang2();
}

fn bang1() bool {
    return false;
}

fn bang2() void {
    @panic("PermissionDenied");
}
Shell
$ zig build-exe stack_trace.zig
$ ./stack_trace
thread 140609 panic: PermissionDenied
/home/andy/src/zig-0.12.x/docgen_tmp/stack_trace.zig:38:5: 0x1037f80 in bang2 (stack_trace)
    @panic("PermissionDenied");
    ^
/home/andy/src/zig-0.12.x/docgen_tmp/stack_trace.zig:30:10: 0x1068688 in hello (stack_trace)
    bang2();
         ^
/home/andy/src/zig-0.12.x/docgen_tmp/stack_trace.zig:17:14: 0x1037f5c in bar (stack_trace)
        hello();
             ^
/home/andy/src/zig-0.12.x/docgen_tmp/stack_trace.zig:7:12: 0x1035e8c in foo (stack_trace)
        bar();
           ^
/home/andy/src/zig-0.12.x/docgen_tmp/stack_trace.zig:2:8: 0x1033e2d in main (stack_trace)
    foo(12);
       ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x10336d9 in posixCallMainAndExit (stack_trace)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1033241 in _start (stack_trace)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Here, the stack trace does not explain how the control flow in bar got to the hello() call. One would have to open a debugger or further instrument the application in order to find out. The error return trace, on the other hand, shows exactly how the error bubbled up.

This debugging feature makes it easier to iterate quickly on code that robustly handles all error conditions. This means that Zig developers will naturally find themselves writing correct, robust code in order to increase their development pace.

Error Return Traces are enabled by default in Debug and ReleaseSafe builds and disabled by default in ReleaseFast and ReleaseSmall builds.

There are a few ways to activate this error return tracing feature:

  • Return an error from main
  • An error makes its way to catch unreachable and you have not overridden the default panic handler
  • Use errorReturnTrace to access the current return trace. You can use std.debug.dumpStackTrace to print it. This function returns comptime-known null when building without error return tracing support.

Implementation Details §

To analyze performance cost, there are two cases:

  • when no errors are returned
  • when returning errors

For the case when no errors are returned, the cost is a single memory write operation, only in the first non-failable function in the call graph that calls a failable function, i.e. when a function returning void calls a function returning error. This is to initialize this struct in the stack memory:

stack_trace_struct.zig
pub const StackTrace = struct {
    index: usize,
    instruction_addresses: [N]usize,
};

Here, N is the maximum function call depth as determined by call graph analysis. Recursion is ignored and counts for 2.

A pointer to StackTrace is passed as a secret parameter to every function that can return an error, but it's always the first parameter, so it can likely sit in a register and stay there.

That's it for the path when no errors occur. It's practically free in terms of performance.

When generating the code for a function that returns an error, just before the return statement (only for the return statements that return errors), Zig generates a call to this function:

zig_return_error_fn.zig
// marked as "no-inline" in LLVM IR
fn __zig_return_error(stack_trace: *StackTrace) void {
    stack_trace.instruction_addresses[stack_trace.index] = @returnAddress();
    stack_trace.index = (stack_trace.index + 1) % N;
}

The cost is 2 math operations plus some memory reads and writes. The memory accessed is constrained and should remain cached for the duration of the error return bubbling.

As for code size cost, 1 function call before a return statement is no big deal. Even so, I have a plan to make the call to __zig_return_error a tail call, which brings the code size cost down to actually zero. What is a return statement in code without error return tracing can become a jump instruction in code with error return tracing.

Optionals §

One area that Zig provides safety without compromising efficiency or readability is with the optional type.

The question mark symbolizes the optional type. You can convert a type to an optional type by putting a question mark in front of it, like this:

optional_integer.zig
// normal integer
const normal_int: i32 = 1234;

// optional integer
const optional_int: ?i32 = 5678;

Now the variable optional_int could be an i32, or null.

Instead of integers, let's talk about pointers. Null references are the source of many runtime exceptions, and even stand accused of being the worst mistake of computer science.

Zig does not have them.

Instead, you can use an optional pointer. This secretly compiles down to a normal pointer, since we know we can use 0 as the null value for the optional type. But the compiler can check your work and make sure you don't assign null to something that can't be null.

Typically the downside of not having null is that it makes the code more verbose to write. But, let's compare some equivalent C code and Zig code.

Task: call malloc, if the result is null, return null.

C code

call_malloc_in_c.c
// malloc prototype included for reference
void *malloc(size_t size);

struct Foo *do_a_thing(void) {
    char *ptr = malloc(1234);
    if (!ptr) return NULL;
    // ...
}

Zig code

call_malloc_from_zig.zig
// malloc prototype included for reference
extern fn malloc(size: usize) ?[*]u8;

fn doAThing() ?*Foo {
    const ptr = malloc(1234) orelse return null;
    _ = ptr; // ...
}

Here, Zig is at least as convenient, if not more, than C. And, the type of "ptr" is [*]u8 not ?[*]u8. The orelse keyword unwrapped the optional type and therefore ptr is guaranteed to be non-null everywhere it is used in the function.

The other form of checking against NULL you might see looks like this:

checking_null_in_c.c
void do_a_thing(struct Foo *foo) {
    // do some stuff

    if (foo) {
        do_something_with_foo(foo);
    }

    // do some stuff
}

In Zig you can accomplish the same thing:

checking_null_in_zig.zig
const Foo = struct{};
fn doSomethingWithFoo(foo: *Foo) void { _ = foo; }

fn doAThing(optional_foo: ?*Foo) void {
    // do some stuff

    if (optional_foo) |foo| {
      doSomethingWithFoo(foo);
    }

    // do some stuff
}

Once again, the notable thing here is that inside the if block, foo is no longer an optional pointer, it is a pointer, which cannot be null.

One benefit to this is that functions which take pointers as arguments can be annotated with the "nonnull" attribute - __attribute__((nonnull)) in GCC. The optimizer can sometimes make better decisions knowing that pointer arguments cannot be null.

Optional Type §

An optional is created by putting ? in front of a type. You can use compile-time reflection to access the child type of an optional:

test_optional_type.zig
const expect = @import("std").testing.expect;

test "optional type" {
    // Declare an optional and coerce from null:
    var foo: ?i32 = null;

    // Coerce from child type of an optional
    foo = 1234;

    // Use compile-time reflection to access the child type of the optional:
    try comptime expect(@typeInfo(@TypeOf(foo)).Optional.child == i32);
}
Shell
$ zig test test_optional_type.zig
1/1 test_optional_type.test.optional type... OK
All 1 tests passed.

null §

Just like undefined, null has its own type, and the only way to use it is to cast it to a different type:

null.zig
const optional_value: ?i32 = null;

Optional Pointers §

An optional pointer is guaranteed to be the same size as a pointer. The null of the optional is guaranteed to be address 0.

test_optional_pointer.zig
const expect = @import("std").testing.expect;

test "optional pointers" {
    // Pointers cannot be null. If you want a null pointer, use the optional
    // prefix `?` to make the pointer type optional.
    var ptr: ?*i32 = null;

    var x: i32 = 1;
    ptr = &x;

    try expect(ptr.?.* == 1);

    // Optional pointers are the same size as normal pointers, because pointer
    // value 0 is used as the null value.
    try expect(@sizeOf(?*i32) == @sizeOf(*i32));
}
Shell
$ zig test test_optional_pointer.zig
1/1 test_optional_pointer.test.optional pointers... OK
All 1 tests passed.

See also:

Casting §

A type cast converts a value of one type to another. Zig has Type Coercion for conversions that are known to be completely safe and unambiguous, and Explicit Casts for conversions that one would not want to happen on accident. There is also a third kind of type conversion called Peer Type Resolution for the case when a result type must be decided given multiple operand types.

Type Coercion §

Type coercion occurs when one type is expected, but different type is provided:

test_type_coercion.zig
test "type coercion - variable declaration" {
    const a: u8 = 1;
    const b: u16 = a;
    _ = b;
}

test "type coercion - function call" {
    const a: u8 = 1;
    foo(a);
}

fn foo(b: u16) void {
    _ = b;
}

test "type coercion - @as builtin" {
    const a: u8 = 1;
    const b = @as(u16, a);
    _ = b;
}
Shell
$ zig test test_type_coercion.zig
1/3 test_type_coercion.test.type coercion - variable declaration... OK
2/3 test_type_coercion.test.type coercion - function call... OK
3/3 test_type_coercion.test.type coercion - @as builtin... OK
All 3 tests passed.

Type coercions are only allowed when it is completely unambiguous how to get from one type to another, and the transformation is guaranteed to be safe. There is one exception, which is C Pointers.

Type Coercion: Stricter Qualification §

Values which have the same representation at runtime can be cast to increase the strictness of the qualifiers, no matter how nested the qualifiers are:

  • const - non-const to const is allowed
  • volatile - non-volatile to volatile is allowed
  • align - bigger to smaller alignment is allowed
  • error sets to supersets is allowed

These casts are no-ops at runtime since the value representation does not change.

test_no_op_casts.zig
test "type coercion - const qualification" {
    var a: i32 = 1;
    const b: *i32 = &a;
    foo(b);
}

fn foo(_: *const i32) void {}
Shell
$ zig test test_no_op_casts.zig
1/1 test_no_op_casts.test.type coercion - const qualification... OK
All 1 tests passed.

In addition, pointers coerce to const optional pointers:

test_pointer_coerce_const_optional.zig
const std = @import("std");
const expect = std.testing.expect;
const mem = std.mem;

test "cast *[1][*]const u8 to [*]const ?[*]const u8" {
    const window_name = [1][*]const u8{"window name"};
    const x: [*]const ?[*]const u8 = &window_name;
    try expect(mem.eql(u8, std.mem.sliceTo(@as([*:0]const u8, @ptrCast(x[0].?)), 0), "window name"));
}
Shell
$ zig test test_pointer_coerce_const_optional.zig
1/1 test_pointer_coerce_const_optional.test.cast *[1][*]const u8 to [*]const ?[*]const u8... OK
All 1 tests passed.

Type Coercion: Integer and Float Widening §

Integers coerce to integer types which can represent every value of the old type, and likewise Floats coerce to float types which can represent every value of the old type.

test_integer_widening.zig
const std = @import("std");
const builtin = @import("builtin");
const expect = std.testing.expect;
const mem = std.mem;

test "integer widening" {
    const a: u8 = 250;
    const b: u16 = a;
    const c: u32 = b;
    const d: u64 = c;
    const e: u64 = d;
    const f: u128 = e;
    try expect(f == a);
}

test "implicit unsigned integer to signed integer" {
    const a: u8 = 250;
    const b: i16 = a;
    try expect(b == 250);
}

test "float widening" {
    const a: f16 = 12.34;
    const b: f32 = a;
    const c: f64 = b;
    const d: f128 = c;
    try expect(d == a);
}
Shell
$ zig test test_integer_widening.zig
1/3 test_integer_widening.test.integer widening... OK
2/3 test_integer_widening.test.implicit unsigned integer to signed integer... OK
3/3 test_integer_widening.test.float widening... OK
All 3 tests passed.

Type Coercion: Float to Int §

A compiler error is appropriate because this ambiguous expression leaves the compiler two choices about the coercion.

  • Cast 54.0 to comptime_int resulting in @as(comptime_int, 10), which is casted to @as(f32, 10)
  • Cast 5 to comptime_float resulting in @as(comptime_float, 10.8), which is casted to @as(f32, 10.8)
test_ambiguous_coercion.zig
// Compile time coercion of float to int
test "implicit cast to comptime_int" {
    const f: f32 = 54.0 / 5;
    _ = f;
}
Shell
$ zig test test_ambiguous_coercion.zig
docgen_tmp/test_ambiguous_coercion.zig:3:25: error: ambiguous coercion of division operands 'comptime_float' and 'comptime_int'; non-zero remainder '4'
    const f: f32 = 54.0 / 5;
                   ~~~~~^~~

Type Coercion: Slices, Arrays and Pointers §

test_coerce_slices_arrays_and_pointers.zig
const std = @import("std");
const expect = std.testing.expect;

// You can assign constant pointers to arrays to a slice with
// const modifier on the element type. Useful in particular for
// String literals.
test "*const [N]T to []const T" {
    const x1: []const u8 = "hello";
    const x2: []const u8 = &[5]u8{ 'h', 'e', 'l', 'l', 111 };
    try expect(std.mem.eql(u8, x1, x2));

    const y: []const f32 = &[2]f32{ 1.2, 3.4 };
    try expect(y[0] == 1.2);
}

// Likewise, it works when the destination type is an error union.
test "*const [N]T to E![]const T" {
    const x1: anyerror![]const u8 = "hello";
    const x2: anyerror![]const u8 = &[5]u8{ 'h', 'e', 'l', 'l', 111 };
    try expect(std.mem.eql(u8, try x1, try x2));

    const y: anyerror![]const f32 = &[2]f32{ 1.2, 3.4 };
    try expect((try y)[0] == 1.2);
}

// Likewise, it works when the destination type is an optional.
test "*const [N]T to ?[]const T" {
    const x1: ?[]const u8 = "hello";
    const x2: ?[]const u8 = &[5]u8{ 'h', 'e', 'l', 'l', 111 };
    try expect(std.mem.eql(u8, x1.?, x2.?));

    const y: ?[]const f32 = &[2]f32{ 1.2, 3.4 };
    try expect(y.?[0] == 1.2);
}

// In this cast, the array length becomes the slice length.
test "*[N]T to []T" {
    var buf: [5]u8 = "hello".*;
    const x: []u8 = &buf;
    try expect(std.mem.eql(u8, x, "hello"));

    const buf2 = [2]f32{ 1.2, 3.4 };
    const x2: []const f32 = &buf2;
    try expect(std.mem.eql(f32, x2, &[2]f32{ 1.2, 3.4 }));
}

// Single-item pointers to arrays can be coerced to many-item pointers.
test "*[N]T to [*]T" {
    var buf: [5]u8 = "hello".*;
    const x: [*]u8 = &buf;
    try expect(x[4] == 'o');
    // x[5] would be an uncaught out of bounds pointer dereference!
}

// Likewise, it works when the destination type is an optional.
test "*[N]T to ?[*]T" {
    var buf: [5]u8 = "hello".*;
    const x: ?[*]u8 = &buf;
    try expect(x.?[4] == 'o');
}

// Single-item pointers can be cast to len-1 single-item arrays.
test "*T to *[1]T" {
    var x: i32 = 1234;
    const y: *[1]i32 = &x;
    const z: [*]i32 = y;
    try expect(z[0] == 1234);
}
Shell
$ zig test test_coerce_slices_arrays_and_pointers.zig
1/7 test_coerce_slices_arrays_and_pointers.test.*const [N]T to []const T... OK
2/7 test_coerce_slices_arrays_and_pointers.test.*const [N]T to E![]const T... OK
3/7 test_coerce_slices_arrays_and_pointers.test.*const [N]T to ?[]const T... OK
4/7 test_coerce_slices_arrays_and_pointers.test.*[N]T to []T... OK
5/7 test_coerce_slices_arrays_and_pointers.test.*[N]T to [*]T... OK
6/7 test_coerce_slices_arrays_and_pointers.test.*[N]T to ?[*]T... OK
7/7 test_coerce_slices_arrays_and_pointers.test.*T to *[1]T... OK
All 7 tests passed.

See also:

Type Coercion: Optionals §

The payload type of Optionals, as well as null, coerce to the optional type.

test_coerce_optionals.zig
const std = @import("std");
const expect = std.testing.expect;

test "coerce to optionals" {
    const x: ?i32 = 1234;
    const y: ?i32 = null;

    try expect(x.? == 1234);
    try expect(y == null);
}
Shell
$ zig test test_coerce_optionals.zig
1/1 test_coerce_optionals.test.coerce to optionals... OK
All 1 tests passed.

Optionals work nested inside the Error Union Type, too:

test_coerce_optional_wrapped_error_union.zig
const std = @import("std");
const expect = std.testing.expect;

test "coerce to optionals wrapped in error union" {
    const x: anyerror!?i32 = 1234;
    const y: anyerror!?i32 = null;

    try expect((try x).? == 1234);
    try expect((try y) == null);
}
Shell
$ zig test test_coerce_optional_wrapped_error_union.zig
1/1 test_coerce_optional_wrapped_error_union.test.coerce to optionals wrapped in error union... OK
All 1 tests passed.

Type Coercion: Error Unions §

The payload type of an Error Union Type as well as the Error Set Type coerce to the error union type:

test_coerce_to_error_union.zig
const std = @import("std");
const expect = std.testing.expect;

test "coercion to error unions" {
    const x: anyerror!i32 = 1234;
    const y: anyerror!i32 = error.Failure;

    try expect((try x) == 1234);
    try std.testing.expectError(error.Failure, y);
}
Shell
$ zig test test_coerce_to_error_union.zig
1/1 test_coerce_to_error_union.test.coercion to error unions... OK
All 1 tests passed.

Type Coercion: Compile-Time Known Numbers §

When a number is comptime-known to be representable in the destination type, it may be coerced:

test_coerce_large_to_small.zig
const std = @import("std");
const expect = std.testing.expect;

test "coercing large integer type to smaller one when value is comptime-known to fit" {
    const x: u64 = 255;
    const y: u8 = x;
    try expect(y == 255);
}
Shell
$ zig test test_coerce_large_to_small.zig
1/1 test_coerce_large_to_small.test.coercing large integer type to smaller one when value is comptime-known to fit... OK
All 1 tests passed.

Type Coercion: Unions and Enums §

Tagged unions can be coerced to enums, and enums can be coerced to tagged unions when they are comptime-known to be a field of the union that has only one possible value, such as void:

test_coerce_unions_enums.zig
const std = @import("std");
const expect = std.testing.expect;

const E = enum {
    one,
    two,
    three,
};

const U = union(E) {
    one: i32,
    two: f32,
    three,
};

const U2 = union(enum) {
    a: void,
    b: f32,

    fn tag(self: U2) usize {
        switch (self) {
            .a => return 1,
            .b => return 2,
        }
    }
};

test "coercion between unions and enums" {
    const u = U{ .two = 12.34 };
    const e: E = u; // coerce union to enum
    try expect(e == E.two);

    const three = E.three;
    const u_2: U = three; // coerce enum to union
    try expect(u_2 == E.three);

    const u_3: U = .three; // coerce enum literal to union
    try expect(u_3 == E.three);

    const u_4: U2 = .a; // coerce enum literal to union with inferred enum tag type.
    try expect(u_4.tag() == 1);

    // The following example is invalid.
    // error: coercion from enum '@TypeOf(.enum_literal)' to union 'test_coerce_unions_enum.U2' must initialize 'f32' field 'b'
    //var u_5: U2 = .b;
    //try expect(u_5.tag() == 2);
}
Shell
$ zig test test_coerce_unions_enums.zig
1/1 test_coerce_unions_enums.test.coercion between unions and enums... OK
All 1 tests passed.

See also:

Type Coercion: undefined §

undefined can be coerced to any type.

Type Coercion: Tuples to Arrays §

Tuples can be coerced to arrays, if all of the fields have the same type.

test_coerce_tuples_arrays.zig
const std = @import("std");
const expect = std.testing.expect;

const Tuple = struct{ u8, u8 };
test "coercion from homogenous tuple to array" {
	const tuple: Tuple = .{5, 6};
	const array: [2]u8 = tuple;
	_ = array;
}
Shell
$ zig test test_coerce_tuples_arrays.zig
1/1 test_coerce_tuples_arrays.test.coercion from homogenous tuple to array... OK
All 1 tests passed.

Explicit Casts §

Explicit casts are performed via Builtin Functions. Some explicit casts are safe; some are not. Some explicit casts perform language-level assertions; some do not. Some explicit casts are no-ops at runtime; some are not.

Peer Type Resolution §

Peer Type Resolution occurs in these places:

This kind of type resolution chooses a type that all peer types can coerce into. Here are some examples:

test_peer_type_resolution.zig
const std = @import("std");
const expect = std.testing.expect;
const mem = std.mem;

test "peer resolve int widening" {
    const a: i8 = 12;
    const b: i16 = 34;
    const c = a + b;
    try expect(c == 46);
    try expect(@TypeOf(c) == i16);
}

test "peer resolve arrays of different size to const slice" {
    try expect(mem.eql(u8, boolToStr(true), "true"));
    try expect(mem.eql(u8, boolToStr(false), "false"));
    try comptime expect(mem.eql(u8, boolToStr(true), "true"));
    try comptime expect(mem.eql(u8, boolToStr(false), "false"));
}
fn boolToStr(b: bool) []const u8 {
    return if (b) "true" else "false";
}

test "peer resolve array and const slice" {
    try testPeerResolveArrayConstSlice(true);
    try comptime testPeerResolveArrayConstSlice(true);
}
fn testPeerResolveArrayConstSlice(b: bool) !void {
    const value1 = if (b) "aoeu" else @as([]const u8, "zz");
    const value2 = if (b) @as([]const u8, "zz") else "aoeu";
    try expect(mem.eql(u8, value1, "aoeu"));
    try expect(mem.eql(u8, value2, "zz"));
}

test "peer type resolution: ?T and T" {
    try expect(peerTypeTAndOptionalT(true, false).? == 0);
    try expect(peerTypeTAndOptionalT(false, false).? == 3);
    comptime {
        try expect(peerTypeTAndOptionalT(true, false).? == 0);
        try expect(peerTypeTAndOptionalT(false, false).? == 3);
    }
}
fn peerTypeTAndOptionalT(c: bool, b: bool) ?usize {
    if (c) {
        return if (b) null else @as(usize, 0);
    }

    return @as(usize, 3);
}

test "peer type resolution: *[0]u8 and []const u8" {
    try expect(peerTypeEmptyArrayAndSlice(true, "hi").len == 0);
    try expect(peerTypeEmptyArrayAndSlice(false, "hi").len == 1);
    comptime {
        try expect(peerTypeEmptyArrayAndSlice(true, "hi").len == 0);
        try expect(peerTypeEmptyArrayAndSlice(false, "hi").len == 1);
    }
}
fn peerTypeEmptyArrayAndSlice(a: bool, slice: []const u8) []const u8 {
    if (a) {
        return &[_]u8{};
    }

    return slice[0..1];
}
test "peer type resolution: *[0]u8, []const u8, and anyerror![]u8" {
    {
        var data = "hi".*;
        const slice = data[0..];
        try expect((try peerTypeEmptyArrayAndSliceAndError(true, slice)).len == 0);
        try expect((try peerTypeEmptyArrayAndSliceAndError(false, slice)).len == 1);
    }
    comptime {
        var data = "hi".*;
        const slice = data[0..];
        try expect((try peerTypeEmptyArrayAndSliceAndError(true, slice)).len == 0);
        try expect((try peerTypeEmptyArrayAndSliceAndError(false, slice)).len == 1);
    }
}
fn peerTypeEmptyArrayAndSliceAndError(a: bool, slice: []u8) anyerror![]u8 {
    if (a) {
        return &[_]u8{};
    }

    return slice[0..1];
}

test "peer type resolution: *const T and ?*T" {
    const a: *const usize = @ptrFromInt(0x123456780);
    const b: ?*usize = @ptrFromInt(0x123456780);
    try expect(a == b);
    try expect(b == a);
}

test "peer type resolution: error union switch" {
    // The non-error and error cases are only peers if the error case is just a switch expression;
    // the pattern `if (x) {...} else |err| blk: { switch (err) {...} }` does not consider the
    // non-error and error case to be peers.
    var a: error{ A, B, C }!u32 = 0;
    _ = &a;
    const b = if (a) |x|
        x + 3
    else |err| switch (err) {
        error.A => 0,
        error.B => 1,
        error.C => null,
    };
    try expect(@TypeOf(b) == ?u32);

    // The non-error and error cases are only peers if the error case is just a switch expression;
    // the pattern `x catch |err| blk: { switch (err) {...} }` does not consider the unwrapped `x`
    // and error case to be peers.
    const c = a catch |err| switch (err) {
        error.A => 0,
        error.B => 1,
        error.C => null,
    };
    try expect(@TypeOf(c) == ?u32);
}
Shell
$ zig test test_peer_type_resolution.zig
1/8 test_peer_type_resolution.test.peer resolve int widening... OK
2/8 test_peer_type_resolution.test.peer resolve arrays of different size to const slice... OK
3/8 test_peer_type_resolution.test.peer resolve array and const slice... OK
4/8 test_peer_type_resolution.test.peer type resolution: ?T and T... OK
5/8 test_peer_type_resolution.test.peer type resolution: *[0]u8 and []const u8... OK
6/8 test_peer_type_resolution.test.peer type resolution: *[0]u8, []const u8, and anyerror![]u8... OK
7/8 test_peer_type_resolution.test.peer type resolution: *const T and ?*T... OK
8/8 test_peer_type_resolution.test.peer type resolution: error union switch... OK
All 8 tests passed.

Zero Bit Types §

For some types, @sizeOf is 0:

  • void
  • The Integers u0 and i0.
  • Arrays and Vectors with len 0, or with an element type that is a zero bit type.
  • An enum with only 1 tag.
  • A struct with all fields being zero bit types.
  • A union with only 1 field which is a zero bit type.

These types can only ever have one possible value, and thus require 0 bits to represent. Code that makes use of these types is not included in the final generated code:

zero_bit_types.zig
export fn entry() void {
    var x: void = {};
    var y: void = {};
    x = y;
    y = x;
}

When this turns into machine code, there is no code generated in the body of entry, even in Debug mode. For example, on x86_64:

0000000000000010 <entry>:
  10:	55                   	push   %rbp
  11:	48 89 e5             	mov    %rsp,%rbp
  14:	5d                   	pop    %rbp
  15:	c3                   	retq   

These assembly instructions do not have any code associated with the void values - they only perform the function call prologue and epilogue.

void §

void can be useful for instantiating generic types. For example, given a Map(Key, Value), one can pass void for the Value type to make it into a Set:

test_void_in_hashmap.zig
const std = @import("std");
const expect = std.testing.expect;

test "turn HashMap into a set with void" {
    var map = std.AutoHashMap(i32, void).init(std.testing.allocator);
    defer map.deinit();

    try map.put(1, {});
    try map.put(2, {});

    try expect(map.contains(2));
    try expect(!map.contains(3));

    _ = map.remove(2);
    try expect(!map.contains(2));
}
Shell
$ zig test test_void_in_hashmap.zig
1/1 test_void_in_hashmap.test.turn HashMap into a set with void... OK
All 1 tests passed.

Note that this is different from using a dummy value for the hash map value. By using void as the type of the value, the hash map entry type has no value field, and thus the hash map takes up less space. Further, all the code that deals with storing and loading the value is deleted, as seen above.

void is distinct from anyopaque. void has a known size of 0 bytes, and anyopaque has an unknown, but non-zero, size.

Expressions of type void are the only ones whose value can be ignored. For example, ignoring a non-void expression is a compile error:

test_expression_ignored.zig
test "ignoring expression value" {
    foo();
}

fn foo() i32 {
    return 1234;
}
Shell
$ zig test test_expression_ignored.zig
docgen_tmp/test_expression_ignored.zig:2:8: error: value of type 'i32' ignored
    foo();
    ~~~^~
docgen_tmp/test_expression_ignored.zig:2:8: note: all non-void values must be used
docgen_tmp/test_expression_ignored.zig:2:8: note: this error can be suppressed by assigning the value to '_'

However, if the expression has type void, there will be no error. Expression results can be explicitly ignored by assigning them to _.

test_void_ignored.zig
test "void is ignored" {
    returnsVoid();
}

test "explicitly ignoring expression value" {
    _ = foo();
}

fn returnsVoid() void {}

fn foo() i32 {
    return 1234;
}
Shell
$ zig test test_void_ignored.zig
1/2 test_void_ignored.test.void is ignored... OK
2/2 test_void_ignored.test.explicitly ignoring expression value... OK
All 2 tests passed.

Result Location Semantics §

During compilation, every Zig expression and sub-expression is assigned optional result location information. This information dictates what type the expression should have (its result type), and where the resulting value should be placed in memory (its result location). The information is optional in the sense that not every expression has this information: assignment to _, for instance, does not provide any information about the type of an expression, nor does it provide a concrete memory location to place it in.

As a motivating example, consider the statement const x: u32 = 42;. The type annotation here provides a result type of u32 to the initialization expression 42, instructing the compiler to coerce this integer (initally of type comptime_int) to this type. We will see more examples shortly.

This is not an implementation detail: the logic outlined above is codified into the Zig language specification, and is the primary mechanism of type inference in the language. This system is collectively referred to as "Result Location Semantics".

Result Types §

Result types are propagated recursively through expressions where possible. For instance, if the expression &e has result type *u32, then e is given a result type of u32, allowing the language to perform this coercion before taking a reference.

The result type mechanism is utilized by casting builtins such as @intCast. Rather than taking as an argument the type to cast to, these builtins use their result type to determine this information. The result type is often known from context; where it is not, the @as builtin can be used to explicitly provide a result type.

We can break down the result types for each component of a simple expression as follows:

result_type_propagation.zig
const expectEqual = @import("std").testing.expectEqual;
test "result type propagates through struct initializer" {
    const S = struct { x: u32 };
    const val: u64 = 123;
    const s: S = .{ .x = @intCast(val) };
    // .{ .x = @intCast(val) }   has result type `S` due to the type annotation
    //         @intCast(val)     has result type `u32` due to the type of the field `S.x`
    //                  val      has no result type, as it is permitted to be any integer type
    try expectEqual(@as(u32, 123), s.x);
}
Shell
$ zig test result_type_propagation.zig
1/1 result_type_propagation.test.result type propagates through struct initializer... OK
All 1 tests passed.

This result type information is useful for the aforementioned cast builtins, as well as to avoid the construction of pre-coercion values, and to avoid the need for explicit type coercions in some cases. The following table details how some common expressions propagate result types, where x and y are arbitrary sub-expressions.

Expression Parent Result Type Sub-expression Result Type
const val: T = x - x is a T
var val: T = x - x is a T
val = x - x is a @TypeOf(val)
@as(T, x) - x is a T
&x *T x is a T
&x []T x is some array of T
f(x) - x has the type of the first parameter of f
.{x} T x is a std.meta.FieldType(T, .@"0")
.{ .a = x } T x is a std.meta.FieldType(T, .a)
T{x} - x is a std.meta.FieldType(T, .@"0")
T{ .a = x } - x is a std.meta.FieldType(T, .a)
@Type(x) - x is a std.builtin.Type
@typeInfo(x) - x is a type
x << y - y is a std.math.Log2IntCeil(@TypeOf(x))

Result Locations §

In addition to result type information, every expression may be optionally assigned a result location: a pointer to which the value must be directly written. This system can be used to prevent intermediate copies when initializing data structures, which can be important for types which must have a fixed memory address ("pinned" types).

When compiling the simple assignment expression x = e, many languages would create the temporary value e on the stack, and then assign it to x, potentially performing a type coercion in the process. Zig approaches this differently. The expression e is given a result type matching the type of x, and a result location of &x. For many syntactic forms of e, this has no practical impact. However, it can have important semantic effects when working with more complex syntax forms.

For instance, if the expression .{ .a = x, .b = y } has a result location of ptr, then x is given a result location of &ptr.a, and y a result location of &ptr.b. Without this system, this expression would construct a temporary struct value entirely on the stack, and only then copy it to the destination address. In essence, Zig desugars the assignment foo = .{ .a = x, .b = y } to the two statements foo.a = x; foo.b = y;.

This can sometimes be important when assigning an aggregate value where the initialization expression depends on the previous value of the aggregate. The easiest way to demonstrate this is by attempting to swap fields of a struct or array - the following logic looks sound, but in fact is not:

result_location_interfering_with_swap.zig
const expect = @import("std").testing.expect;
test "attempt to swap array elements with array initializer" {
    var arr: [2]u32 = .{ 1, 2 };
    arr = .{ arr[1], arr[0] };
    // The previous line is equivalent to the following two lines:
    //   arr[0] = arr[1];
    //   arr[1] = arr[0];
    // So this fails!
    try expect(arr[0] == 2); // succeeds
    try expect(arr[1] == 1); // fails
}
Shell
$ zig test result_location_interfering_with_swap.zig
1/1 result_location_interfering_with_swap.test.attempt to swap array elements with array initializer... FAIL (TestUnexpectedResult)
/home/andy/src/zig-0.12.x/lib/std/testing.zig:540:14: 0x1038fef in expect (test)
    if (!ok) return error.TestUnexpectedResult;
             ^
/home/andy/src/zig-0.12.x/docgen_tmp/result_location_interfering_with_swap.zig:10:5: 0x1039155 in test.attempt to swap array elements with array initializer (test)
    try expect(arr[1] == 1); // fails
    ^
0 passed; 0 skipped; 1 failed.
error: the following test command failed with exit code 1:
/home/andy/src/zig-0.12.x/zig-cache/o/16c1f15d80edb1b0a645dc5f05309163/test

The following table details how some common expressions propagate result locations, where x and y are arbitrary sub-expressions. Note that some expressions cannot provide meaningful result locations to sub-expressions, even if they themselves have a result location.

Expression Result Location Sub-expression Result Locations
const val: T = x - x has result location &val
var val: T = x - x has result location &val
val = x - x has result location &val
@as(T, x) ptr x has no result location
&x ptr x has no result location
f(x) ptr x has no result location
.{x} ptr x has result location &ptr[0]
.{ .a = x } ptr x has result location &ptr.a
T{x} ptr x has no result location (typed initializers do not propagate result locations)
T{ .a = x } ptr x has no result location (typed initializers do not propagate result locations)
@Type(x) ptr x has no result location
@typeInfo(x) ptr x has no result location
x << y ptr x and y do not have result locations

usingnamespace §

usingnamespace is a declaration that mixes all the public declarations of the operand, which must be a struct, union, enum, or opaque, into the namespace:

test_usingnamespace.zig
test "using std namespace" {
    const S = struct {
        usingnamespace @import("std");
    };
    try S.testing.expect(true);
}
Shell
$ zig test test_usingnamespace.zig
1/1 test_usingnamespace.test.using std namespace... OK
All 1 tests passed.

usingnamespace has an important use case when organizing the public API of a file or package. For example, one might have c.zig with all of the C imports:

c.zig
pub usingnamespace @cImport({
    @cInclude("epoxy/gl.h");
    @cInclude("GLFW/glfw3.h");
    @cDefine("STBI_ONLY_PNG", "");
    @cDefine("STBI_NO_STDIO", "");
    @cInclude("stb_image.h");
});

The above example demonstrates using pub to qualify the usingnamespace additionally makes the imported declarations pub. This can be used to forward declarations, giving precise control over what declarations a given file exposes.

comptime §

Zig places importance on the concept of whether an expression is known at compile-time. There are a few different places this concept is used, and these building blocks are used to keep the language small, readable, and powerful.

Introducing the Compile-Time Concept §

Compile-Time Parameters §

Compile-time parameters is how Zig implements generics. It is compile-time duck typing.

compile-time_duck_typing.zig
fn max(comptime T: type, a: T, b: T) T {
    return if (a > b) a else b;
}
fn gimmeTheBiggerFloat(a: f32, b: f32) f32 {
    return max(f32, a, b);
}
fn gimmeTheBiggerInteger(a: u64, b: u64) u64 {
    return max(u64, a, b);
}

In Zig, types are first-class citizens. They can be assigned to variables, passed as parameters to functions, and returned from functions. However, they can only be used in expressions which are known at compile-time, which is why the parameter T in the above snippet must be marked with comptime.

A comptime parameter means that:

  • At the callsite, the value must be known at compile-time, or it is a compile error.
  • In the function definition, the value is known at compile-time.

For example, if we were to introduce another function to the above snippet:

test_unresolved_comptime_value.zig
fn max(comptime T: type, a: T, b: T) T {
    return if (a > b) a else b;
}
test "try to pass a runtime type" {
    foo(false);
}
fn foo(condition: bool) void {
    const result = max(
        if (condition) f32 else u64,
        1234,
        5678);
    _ = result;
}
Shell
$ zig test test_unresolved_comptime_value.zig
docgen_tmp/test_unresolved_comptime_value.zig:9:13: error: unable to resolve comptime value
        if (condition) f32 else u64,
            ^~~~~~~~~
docgen_tmp/test_unresolved_comptime_value.zig:9:13: note: condition in comptime branch must be comptime-known
referenced by:
    test.try to pass a runtime type: docgen_tmp/test_unresolved_comptime_value.zig:5:5
    remaining reference traces hidden; use '-freference-trace' to see all reference traces

This is an error because the programmer attempted to pass a value only known at run-time to a function which expects a value known at compile-time.

Another way to get an error is if we pass a type that violates the type checker when the function is analyzed. This is what it means to have compile-time duck typing.

For example:

test_comptime_mismatched_type.zig
fn max(comptime T: type, a: T, b: T) T {
    return if (a > b) a else b;
}
test "try to compare bools" {
    _ = max(bool, true, false);
}
Shell
$ zig test test_comptime_mismatched_type.zig
docgen_tmp/test_comptime_mismatched_type.zig:2:18: error: operator > not allowed for type 'bool'
    return if (a > b) a else b;
               ~~^~~
referenced by:
    test.try to compare bools: docgen_tmp/test_comptime_mismatched_type.zig:5:12
    remaining reference traces hidden; use '-freference-trace' to see all reference traces

On the flip side, inside the function definition with the comptime parameter, the value is known at compile-time. This means that we actually could make this work for the bool type if we wanted to:

test_comptime_max_with_bool.zig
fn max(comptime T: type, a: T, b: T) T {
    if (T == bool) {
        return a or b;
    } else if (a > b) {
        return a;
    } else {
        return b;
    }
}
test "try to compare bools" {
    try @import("std").testing.expect(max(bool, false, true) == true);
}
Shell
$ zig test test_comptime_max_with_bool.zig
1/1 test_comptime_max_with_bool.test.try to compare bools... OK
All 1 tests passed.

This works because Zig implicitly inlines if expressions when the condition is known at compile-time, and the compiler guarantees that it will skip analysis of the branch not taken.

This means that the actual function generated for max in this situation looks like this:

compiler_generated_function.zig
fn max(a: bool, b: bool) bool {
    {
        return a or b;
    }
}

All the code that dealt with compile-time known values is eliminated and we are left with only the necessary run-time code to accomplish the task.

This works the same way for switch expressions - they are implicitly inlined when the target expression is compile-time known.

Compile-Time Variables §

In Zig, the programmer can label variables as comptime. This guarantees to the compiler that every load and store of the variable is performed at compile-time. Any violation of this results in a compile error.

This combined with the fact that we can inline loops allows us to write a function which is partially evaluated at compile-time and partially at run-time.

For example:

test_comptime_evaluation.zig
const expect = @import("std").testing.expect;

const CmdFn = struct {
    name: []const u8,
    func: fn(i32) i32,
};

const cmd_fns = [_]CmdFn{
    CmdFn {.name = "one", .func = one},
    CmdFn {.name = "two", .func = two},
    CmdFn {.name = "three", .func = three},
};
fn one(value: i32) i32 { return value + 1; }
fn two(value: i32) i32 { return value + 2; }
fn three(value: i32) i32 { return value + 3; }

fn performFn(comptime prefix_char: u8, start_value: i32) i32 {
    var result: i32 = start_value;
    comptime var i = 0;
    inline while (i < cmd_fns.len) : (i += 1) {
        if (cmd_fns[i].name[0] == prefix_char) {
            result = cmd_fns[i].func(result);
        }
    }
    return result;
}

test "perform fn" {
    try expect(performFn('t', 1) == 6);
    try expect(performFn('o', 0) == 1);
    try expect(performFn('w', 99) == 99);
}
Shell
$ zig test test_comptime_evaluation.zig
1/1 test_comptime_evaluation.test.perform fn... OK
All 1 tests passed.

This example is a bit contrived, because the compile-time evaluation component is unnecessary; this code would work fine if it was all done at run-time. But it does end up generating different code. In this example, the function performFn is generated three different times, for the different values of prefix_char provided:

performFn_1
// From the line:
// expect(performFn('t', 1) == 6);
fn performFn(start_value: i32) i32 {
    var result: i32 = start_value;
    result = two(result);
    result = three(result);
    return result;
}
performFn_2
// From the line:
// expect(performFn('o', 0) == 1);
fn performFn(start_value: i32) i32 {
    var result: i32 = start_value;
    result = one(result);
    return result;
}
performFn_3
// From the line:
// expect(performFn('w', 99) == 99);
fn performFn(start_value: i32) i32 {
    var result: i32 = start_value;
    _ = &result;
    return result;
}

Note that this happens even in a debug build. This is not a way to write more optimized code, but it is a way to make sure that what should happen at compile-time, does happen at compile-time. This catches more errors and allows expressiveness that in other languages requires using macros, generated code, or a preprocessor to accomplish.

Compile-Time Expressions §

In Zig, it matters whether a given expression is known at compile-time or run-time. A programmer can use a comptime expression to guarantee that the expression will be evaluated at compile-time. If this cannot be accomplished, the compiler will emit an error. For example:

test_comptime_call_extern_function.zig
extern fn exit() noreturn;

test "foo" {
    comptime {
        exit();
    }
}
Shell
$ zig test test_comptime_call_extern_function.zig
docgen_tmp/test_comptime_call_extern_function.zig:5:13: error: comptime call of extern function
        exit();
        ~~~~^~

It doesn't make sense that a program could call exit() (or any other external function) at compile-time, so this is a compile error. However, a comptime expression does much more than sometimes cause a compile error.

Within a comptime expression:

  • All variables are comptime variables.
  • All if, while, for, and switch expressions are evaluated at compile-time, or emit a compile error if this is not possible.
  • All return and try expressions are invalid (unless the function itself is called at compile-time).
  • All code with runtime side effects or depending on runtime values emits a compile error.
  • All function calls cause the compiler to interpret the function at compile-time, emitting a compile error if the function tries to do something that has global runtime side effects.

This means that a programmer can create a function which is called both at compile-time and run-time, with no modification to the function required.

Let's look at an example:

test_fibonacci_recursion.zig
const expect = @import("std").testing.expect;

fn fibonacci(index: u32) u32 {
    if (index < 2) return index;
    return fibonacci(index - 1) + fibonacci(index - 2);
}

test "fibonacci" {
    // test fibonacci at run-time
    try expect(fibonacci(7) == 13);

    // test fibonacci at compile-time
    try comptime expect(fibonacci(7) == 13);
}
Shell
$ zig test test_fibonacci_recursion.zig
1/1 test_fibonacci_recursion.test.fibonacci... OK
All 1 tests passed.

Imagine if we had forgotten the base case of the recursive function and tried to run the tests:

test_fibonacci_comptime_overflow.zig
const expect = @import("std").testing.expect;

fn fibonacci(index: u32) u32 {
    //if (index < 2) return index;
    return fibonacci(index - 1) + fibonacci(index - 2);
}

test "fibonacci" {
    try comptime expect(fibonacci(7) == 13);
}
Shell
$ zig test test_fibonacci_comptime_overflow.zig
docgen_tmp/test_fibonacci_comptime_overflow.zig:5:28: error: overflow of integer type 'u32' with value '-1'
    return fibonacci(index - 1) + fibonacci(index - 2);
                     ~~~~~~^~~
docgen_tmp/test_fibonacci_comptime_overflow.zig:5:21: note: called from here (7 times)
    return fibonacci(index - 1) + fibonacci(index - 2);
           ~~~~~~~~~^~~~~~~~~~~
docgen_tmp/test_fibonacci_comptime_overflow.zig:9:34: note: called from here
    try comptime expect(fibonacci(7) == 13);
                        ~~~~~~~~~^~~

The compiler produces an error which is a stack trace from trying to evaluate the function at compile-time.

Luckily, we used an unsigned integer, and so when we tried to subtract 1 from 0, it triggered undefined behavior, which is always a compile error if the compiler knows it happened. But what would have happened if we used a signed integer?

fibonacci_comptime_infinite_recursion.zig
const assert = @import("std").debug.assert;

fn fibonacci(index: i32) i32 {
    //if (index < 2) return index;
    return fibonacci(index - 1) + fibonacci(index - 2);
}

test "fibonacci" {
    try comptime assert(fibonacci(7) == 13);
}

The compiler is supposed to notice that evaluating this function at compile-time took more than 1000 branches, and thus emits an error and gives up. If the programmer wants to increase the budget for compile-time computation, they can use a built-in function called @setEvalBranchQuota to change the default number 1000 to something else.

However, there is a design flaw in the compiler causing it to stack overflow instead of having the proper behavior here. I'm terribly sorry about that. I hope to get this resolved before the next release.

What if we fix the base case, but put the wrong value in the expect line?

test_fibonacci_comptime_unreachable.zig
const assert = @import("std").debug.assert;

fn fibonacci(index: i32) i32 {
    if (index < 2) return index;
    return fibonacci(index - 1) + fibonacci(index - 2);
}

test "fibonacci" {
    try comptime assert(fibonacci(7) == 99999);
}
Shell
$ zig test test_fibonacci_comptime_unreachable.zig
lib/std/debug.zig:403:14: error: reached unreachable code
    if (!ok) unreachable; // assertion failure
             ^~~~~~~~~~~
docgen_tmp/test_fibonacci_comptime_unreachable.zig:9:24: note: called from here
    try comptime assert(fibonacci(7) == 99999);
                 ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~

At container level (outside of any function), all expressions are implicitly comptime expressions. This means that we can use functions to initialize complex static data. For example:

test_container-level_comptime_expressions.zig
const first_25_primes = firstNPrimes(25);
const sum_of_first_25_primes = sum(&first_25_primes);

fn firstNPrimes(comptime n: usize) [n]i32 {
    var prime_list: [n]i32 = undefined;
    var next_index: usize = 0;
    var test_number: i32 = 2;
    while (next_index < prime_list.len) : (test_number += 1) {
        var test_prime_index: usize = 0;
        var is_prime = true;
        while (test_prime_index < next_index) : (test_prime_index += 1) {
            if (test_number % prime_list[test_prime_index] == 0) {
                is_prime = false;
                break;
            }
        }
        if (is_prime) {
            prime_list[next_index] = test_number;
            next_index += 1;
        }
    }
    return prime_list;
}

fn sum(numbers: []const i32) i32 {
    var result: i32 = 0;
    for (numbers) |x| {
        result += x;
    }
    return result;
}

test "variable values" {
    try @import("std").testing.expect(sum_of_first_25_primes == 1060);
}
Shell
$ zig test test_container-level_comptime_expressions.zig
1/1 test_container-level_comptime_expressions.test.variable values... OK
All 1 tests passed.

When we compile this program, Zig generates the constants with the answer pre-computed. Here are the lines from the generated LLVM IR:

@0 = internal unnamed_addr constant [25 x i32] [i32 2, i32 3, i32 5, i32 7, i32 11, i32 13, i32 17, i32 19, i32 23, i32 29, i32 31, i32 37, i32 41, i32 43, i32 47, i32 53, i32 59, i32 61, i32 67, i32 71, i32 73, i32 79, i32 83, i32 89, i32 97]
@1 = internal unnamed_addr constant i32 1060

Note that we did not have to do anything special with the syntax of these functions. For example, we could call the sum function as is with a slice of numbers whose length and values were only known at run-time.

Generic Data Structures §

Zig uses comptime capabilities to implement generic data structures without introducing any special-case syntax.

Here is an example of a generic List data structure.

generic_data_structure.zig
fn List(comptime T: type) type {
    return struct {
        items: []T,
        len: usize,
    };
}

// The generic List data structure can be instantiated by passing in a type:
var buffer: [10]i32 = undefined;
var list = List(i32){
    .items = &buffer,
    .len = 0,
};

That's it. It's a function that returns an anonymous struct. For the purposes of error messages and debugging, Zig infers the name "List(i32)" from the function name and parameters invoked when creating the anonymous struct.

To explicitly give a type a name, we assign it to a constant.

anonymous_struct_name.zig
const Node = struct {
    next: ?*Node,
    name: []const u8,
};

var node_a = Node{
    .next = null,
    .name = "Node A",
};

var node_b = Node{
    .next = &node_a,
    .name = "Node B",
};

In this example, the Node struct refers to itself. This works because all top level declarations are order-independent. As long as the compiler can determine the size of the struct, it is free to refer to itself. In this case, Node refers to itself as a pointer, which has a well-defined size at compile time, so it works fine.

Case Study: print in Zig §

Putting all of this together, let's see how print works in Zig.

print.zig
const print = @import("std").debug.print;

const a_number: i32 = 1234;
const a_string = "foobar";

pub fn main() void {
    print("here is a string: '{s}' here is a number: {}\n", .{a_string, a_number});
}
Shell
$ zig build-exe print.zig
$ ./print
here is a string: 'foobar' here is a number: 1234

Let's crack open the implementation of this and see how it works:

poc_print_fn.zig
const Writer = struct {
    /// Calls print and then flushes the buffer.
    pub fn print(self: *Writer, comptime format: []const u8, args: anytype) anyerror!void {
        const State = enum {
            start,
            open_brace,
            close_brace,
        };

        comptime var start_index: usize = 0;
        comptime var state = State.start;
        comptime var next_arg: usize = 0;

        inline for (format, 0..) |c, i| {
            switch (state) {
                State.start => switch (c) {
                    '{' => {
                        if (start_index < i) try self.write(format[start_index..i]);
                        state = State.open_brace;
                    },
                    '}' => {
                        if (start_index < i) try self.write(format[start_index..i]);
                        state = State.close_brace;
                    },
                    else => {},
                },
                State.open_brace => switch (c) {
                    '{' => {
                        state = State.start;
                        start_index = i;
                    },
                    '}' => {
                        try self.printValue(args[next_arg]);
                        next_arg += 1;
                        state = State.start;
                        start_index = i + 1;
                    },
                    's' => {
                        continue;
                    },
                    else => @compileError("Unknown format character: " ++ [1]u8{c}),
                },
                State.close_brace => switch (c) {
                    '}' => {
                        state = State.start;
                        start_index = i;
                    },
                    else => @compileError("Single '}' encountered in format string"),
                },
            }
        }
        comptime {
            if (args.len != next_arg) {
                @compileError("Unused arguments");
            }
            if (state != State.start) {
                @compileError("Incomplete format string: " ++ format);
            }
        }
        if (start_index < format.len) {
            try self.write(format[start_index..format.len]);
        }
        try self.flush();
    }

    fn write(self: *Writer, value: []const u8) !void {
        _ = self;
        _ = value;
    }
    pub fn printValue(self: *Writer, value: anytype) !void {
        _ = self;
        _ = value;
    }
    fn flush(self: *Writer) !void {
        _ = self;
    }
};

This is a proof of concept implementation; the actual function in the standard library has more formatting capabilities.

Note that this is not hard-coded into the Zig compiler; this is userland code in the standard library.

When this function is analyzed from our example code above, Zig partially evaluates the function and emits a function that actually looks like this:

Emitted print Function
pub fn print(self: *Writer, arg0: []const u8, arg1: i32) !void {
    try self.write("here is a string: '");
    try self.printValue(arg0);
    try self.write("' here is a number: ");
    try self.printValue(arg1);
    try self.write("\n");
    try self.flush();
}

printValue is a function that takes a parameter of any type, and does different things depending on the type:

poc_printValue_fn.zig
const Writer = struct {
    pub fn printValue(self: *Writer, value: anytype) !void {
        switch (@typeInfo(@TypeOf(value))) {
            .Int => {
                return self.writeInt(value);
            },
            .Float => {
                return self.writeFloat(value);
            },
            .Pointer => {
                return self.write(value);
            },
            else => {
                @compileError("Unable to print type '" ++ @typeName(@TypeOf(value)) ++ "'");
            },
        }
    }

    fn write(self: *Writer, value: []const u8) !void {
        _ = self;
        _ = value;
    }
    fn writeInt(self: *Writer, value: anytype) !void {
        _ = self;
        _ = value;
    }
    fn writeFloat(self: *Writer, value: anytype) !void {
        _ = self;
        _ = value;
    }
};

And now, what happens if we give too many arguments to print?

test_print_too_many_args.zig
const print = @import("std").debug.print;

const a_number: i32 = 1234;
const a_string = "foobar";

test "print too many arguments" {
    print("here is a string: '{s}' here is a number: {}\n", .{
        a_string,
        a_number,
        a_number,
    });
}
Shell
$ zig test test_print_too_many_args.zig
lib/std/fmt.zig:203:18: error: unused argument in 'here is a string: '{s}' here is a number: {}
                               '
            1 => @compileError("unused argument in '" ++ fmt ++ "'"),
                 ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
referenced by:
    print__anon_2565: lib/std/io/Writer.zig:23:26
    print: lib/std/io.zig:324:47
    remaining reference traces hidden; use '-freference-trace' to see all reference traces

Zig gives programmers the tools needed to protect themselves against their own mistakes.

Zig doesn't care whether the format argument is a string literal, only that it is a compile-time known value that can be coerced to a []const u8:

print_comptime-known_format.zig
const print = @import("std").debug.print;

const a_number: i32 = 1234;
const a_string = "foobar";
const fmt = "here is a string: '{s}' here is a number: {}\n";

pub fn main() void {
    print(fmt, .{a_string, a_number});
}
Shell
$ zig build-exe print_comptime-known_format.zig
$ ./print_comptime-known_format
here is a string: 'foobar' here is a number: 1234

This works fine.

Zig does not special case string formatting in the compiler and instead exposes enough power to accomplish this task in userland. It does so without introducing another language on top of Zig, such as a macro language or a preprocessor language. It's Zig all the way down.

See also:

Assembly §

For some use cases, it may be necessary to directly control the machine code generated by Zig programs, rather than relying on Zig's code generation. For these cases, one can use inline assembly. Here is an example of implementing Hello, World on x86_64 Linux using inline assembly:

inline_assembly.zig
pub fn main() noreturn {
    const msg = "hello world\n";
    _ = syscall3(SYS_write, STDOUT_FILENO, @intFromPtr(msg), msg.len);
    _ = syscall1(SYS_exit, 0);
    unreachable;
}

pub const SYS_write = 1;
pub const SYS_exit = 60;

pub const STDOUT_FILENO = 1;

pub fn syscall1(number: usize, arg1: usize) usize {
    return asm volatile ("syscall"
        : [ret] "={rax}" (-> usize),
        : [number] "{rax}" (number),
          [arg1] "{rdi}" (arg1),
        : "rcx", "r11"
    );
}

pub fn syscall3(number: usize, arg1: usize, arg2: usize, arg3: usize) usize {
    return asm volatile ("syscall"
        : [ret] "={rax}" (-> usize),
        : [number] "{rax}" (number),
          [arg1] "{rdi}" (arg1),
          [arg2] "{rsi}" (arg2),
          [arg3] "{rdx}" (arg3),
        : "rcx", "r11"
    );
}
Shell
$ zig build-exe inline_assembly.zig -target x86_64-linux
$ ./inline_assembly
hello world

Dissecting the syntax:

Assembly Syntax Explained.zig
pub fn syscall1(number: usize, arg1: usize) usize {
    // Inline assembly is an expression which returns a value.
    // the `asm` keyword begins the expression.
    return asm
    // `volatile` is an optional modifier that tells Zig this
    // inline assembly expression has side-effects. Without
    // `volatile`, Zig is allowed to delete the inline assembly
    // code if the result is unused.
    volatile (
    // Next is a comptime string which is the assembly code.
    // Inside this string one may use `%[ret]`, `%[number]`,
    // or `%[arg1]` where a register is expected, to specify
    // the register that Zig uses for the argument or return value,
    // if the register constraint strings are used. However in
    // the below code, this is not used. A literal `%` can be
    // obtained by escaping it with a double percent: `%%`.
    // Often multiline string syntax comes in handy here.
    \\syscall
    // Next is the output. It is possible in the future Zig will
    // support multiple outputs, depending on how
    // https://github.com/ziglang/zig/issues/215 is resolved.
    // It is allowed for there to be no outputs, in which case
    // this colon would be directly followed by the colon for the inputs.
        :
    // This specifies the name to be used in `%[ret]` syntax in
    // the above assembly string. This example does not use it,
    // but the syntax is mandatory.
        [ret]
    // Next is the output constraint string. This feature is still
    // considered unstable in Zig, and so LLVM/GCC documentation
    // must be used to understand the semantics.
    // http://releases.llvm.org/10.0.0/docs/LangRef.html#inline-asm-constraint-string
    // https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
    // In this example, the constraint string means "the result value of
    // this inline assembly instruction is whatever is in $rax".
        "={rax}"
    // Next is either a value binding, or `->` and then a type. The
    // type is the result type of the inline assembly expression.
    // If it is a value binding, then `%[ret]` syntax would be used
    // to refer to the register bound to the value.
        (-> usize),
    // Next is the list of inputs.
    // The constraint for these inputs means, "when the assembly code is
    // executed, $rax shall have the value of `number` and $rdi shall have
    // the value of `arg1`". Any number of input parameters is allowed,
    // including none.
        : [number] "{rax}" (number),
            [arg1] "{rdi}" (arg1),
    // Next is the list of clobbers. These declare a set of registers whose
    // values will not be preserved by the execution of this assembly code.
    // These do not include output or input registers. The special clobber
    // value of "memory" means that the assembly writes to arbitrary undeclared
    // memory locations - not only the memory pointed to by a declared indirect
    // output. In this example we list $rcx and $r11 because it is known the
    // kernel syscall does not preserve these registers.
        : "rcx", "r11"
    );
}

For x86 and x86_64 targets, the syntax is AT&T syntax, rather than the more popular Intel syntax. This is due to technical constraints; assembly parsing is provided by LLVM and its support for Intel syntax is buggy and not well tested.

Some day Zig may have its own assembler. This would allow it to integrate more seamlessly into the language, as well as be compatible with the popular NASM syntax. This documentation section will be updated before 1.0.0 is released, with a conclusive statement about the status of AT&T vs Intel/NASM syntax.

Output Constraints §

Output constraints are still considered to be unstable in Zig, and so LLVM documentation and GCC documentation must be used to understand the semantics.

Note that some breaking changes to output constraints are planned with issue #215.

Input Constraints §

Input constraints are still considered to be unstable in Zig, and so LLVM documentation and GCC documentation must be used to understand the semantics.

Note that some breaking changes to input constraints are planned with issue #215.

Clobbers §

Clobbers are the set of registers whose values will not be preserved by the execution of the assembly code. These do not include output or input registers. The special clobber value of "memory" means that the assembly causes writes to arbitrary undeclared memory locations - not only the memory pointed to by a declared indirect output.

Failure to declare the full set of clobbers for a given inline assembly expression is unchecked Undefined Behavior.

Global Assembly §

When an assembly expression occurs in a container level comptime block, this is global assembly.

This kind of assembly has different rules than inline assembly. First, volatile is not valid because all global assembly is unconditionally included. Second, there are no inputs, outputs, or clobbers. All global assembly is concatenated verbatim into one long string and assembled together. There are no template substitution rules regarding % as there are in inline assembly expressions.

test_global_assembly.zig
const std = @import("std");
const expect = std.testing.expect;

comptime {
    asm (
        \\.global my_func;
        \\.type my_func, @function;
        \\my_func:
        \\  lea (%rdi,%rsi,1),%eax
        \\  retq
    );
}

extern fn my_func(a: i32, b: i32) i32;

test "global assembly" {
    try expect(my_func(12, 34) == 46);
}
Shell
$ zig test test_global_assembly.zig -target x86_64-linux
1/1 test_global_assembly.test.global assembly... OK
All 1 tests passed.

Atomics §

TODO: @fence()

TODO: @atomic rmw

TODO: builtin atomic memory ordering enum

See also:

Async Functions §

Async functions regressed with the release of 0.11.0. Their future in the Zig language is unclear due to multiple unsolved problems:

  • LLVM's lack of ability to optimize them.
  • Third-party debuggers' lack of ability to debug them.
  • The cancellation problem.
  • Async function pointers preventing the stack size from being known.

These problems are surmountable, but it will take time. The Zig team is currently focused on other priorities.

Builtin Functions §

Builtin functions are provided by the compiler and are prefixed with @. The comptime keyword on a parameter means that the parameter must be known at compile time.

@addrSpaceCast §

@addrSpaceCast(ptr: anytype) anytype

Converts a pointer from one address space to another. The new address space is inferred based on the result type. Depending on the current target and address spaces, this cast may be a no-op, a complex operation, or illegal. If the cast is legal, then the resulting pointer points to the same memory location as the pointer operand. It is always valid to cast a pointer between the same address spaces.

@addWithOverflow §

@addWithOverflow(a: anytype, b: anytype) struct { @TypeOf(a, b), u1 }

Performs a + b and returns a tuple with the result and a possible overflow bit.

@alignCast §

@alignCast(ptr: anytype) anytype

ptr can be *T, ?*T, or []T. Changes the alignment of a pointer. The alignment to use is inferred based on the result type.

A pointer alignment safety check is added to the generated code to make sure the pointer is aligned as promised.

@alignOf §

@alignOf(comptime T: type) comptime_int

This function returns the number of bytes that this type should be aligned to for the current target to match the C ABI. When the child type of a pointer has this alignment, the alignment can be omitted from the type.

const assert = @import("std").debug.assert;
comptime {
    assert(*u32 == *align(@alignOf(u32)) u32);
}

The result is a target-specific compile time constant. It is guaranteed to be less than or equal to @sizeOf(T).

See also:

@as §

@as(comptime T: type, expression) T

Performs Type Coercion. This cast is allowed when the conversion is unambiguous and safe, and is the preferred way to convert between types, whenever possible.

@atomicLoad §

@atomicLoad(comptime T: type, ptr: *const T, comptime ordering: AtomicOrder) T

This builtin function atomically dereferences a pointer to a T and returns the value.

T must be a pointer, a bool, a float, an integer or an enum.

AtomicOrder can be found with @import("std").builtin.AtomicOrder.

See also:

@atomicRmw §

@atomicRmw(comptime T: type, ptr: *T, comptime op: AtomicRmwOp, operand: T, comptime ordering: AtomicOrder) T

This builtin function dereferences a pointer to a T and atomically modifies the value and returns the previous value.

T must be a pointer, a bool, a float, an integer or an enum.

AtomicOrder can be found with @import("std").builtin.AtomicOrder.

AtomicRmwOp can be found with @import("std").builtin.AtomicRmwOp.

See also:

@atomicStore §

@atomicStore(comptime T: type, ptr: *T, value: T, comptime ordering: AtomicOrder) void

This builtin function dereferences a pointer to a T and atomically stores the given value.

T must be a pointer, a bool, a float, an integer or an enum.

AtomicOrder can be found with @import("std").builtin.AtomicOrder.

See also:

@bitCast §

@bitCast(value: anytype) anytype

Converts a value of one type to another type. The return type is the inferred result type.

Asserts that @sizeOf(@TypeOf(value)) == @sizeOf(DestType).

Asserts that @typeInfo(DestType) != .Pointer. Use @ptrCast or @ptrFromInt if you need this.

Can be used for these things for example:

  • Convert f32 to u32 bits
  • Convert i32 to u32 preserving twos complement

Works at compile-time if value is known at compile time. It's a compile error to bitcast a value of undefined layout; this means that, besides the restriction from types which possess dedicated casting builtins (enums, pointers, error sets), bare structs, error unions, slices, optionals, and any other type without a well-defined memory layout, also cannot be used in this operation.

@bitOffsetOf §

@bitOffsetOf(comptime T: type, comptime field_name: []const u8) comptime_int

Returns the bit offset of a field relative to its containing struct.

For non packed structs, this will always be divisible by 8. For packed structs, non-byte-aligned fields will share a byte offset, but they will have different bit offsets.

See also:

@bitSizeOf §

@bitSizeOf(comptime T: type) comptime_int

This function returns the number of bits it takes to store T in memory if the type were a field in a packed struct/union. The result is a target-specific compile time constant.

This function measures the size at runtime. For types that are disallowed at runtime, such as comptime_int and type, the result is 0.

See also:

@breakpoint §

@breakpoint() void

This function inserts a platform-specific debug trap instruction which causes debuggers to break there. Unlike for @trap(), execution may continue after this point if the program is resumed.

This function is only valid within function scope.

See also:

@mulAdd §

@mulAdd(comptime T: type, a: T, b: T, c: T) T

Fused multiply-add, similar to (a * b) + c, except only rounds once, and is thus more accurate.

Supports Floats and Vectors of floats.

@byteSwap §

@byteSwap(operand: anytype) T

@TypeOf(operand) must be an integer type or an integer vector type with bit count evenly divisible by 8.

operand may be an integer or vector.

Swaps the byte order of the integer. This converts a big endian integer to a little endian integer, and converts a little endian integer to a big endian integer.

Note that for the purposes of memory layout with respect to endianness, the integer type should be related to the number of bytes reported by @sizeOf bytes. This is demonstrated with u24. @sizeOf(u24) == 4, which means that a u24 stored in memory takes 4 bytes, and those 4 bytes are what are swapped on a little vs big endian system. On the other hand, if T is specified to be u24, then only 3 bytes are reversed.

@bitReverse §

@bitReverse(integer: anytype) T

@TypeOf(anytype) accepts any integer type or integer vector type.

Reverses the bitpattern of an integer value, including the sign bit if applicable.

For example 0b10110110 (u8 = 182, i8 = -74) becomes 0b01101101 (u8 = 109, i8 = 109).

@offsetOf §

@offsetOf(comptime T: type, comptime field_name: []const u8) comptime_int

Returns the byte offset of a field relative to its containing struct.

See also:

@call §

@call(modifier: std.builtin.CallModifier, function: anytype, args: anytype) anytype

Calls a function, in the same way that invoking an expression with parentheses does:

test_call_builtin.zig
const expect = @import("std").testing.expect;

test "noinline function call" {
    try expect(@call(.auto, add, .{3, 9}) == 12);
}

fn add(a: i32, b: i32) i32 {
    return a + b;
}
Shell
$ zig test test_call_builtin.zig
1/1 test_call_builtin.test.noinline function call... OK
All 1 tests passed.

@call allows more flexibility than normal function call syntax does. The CallModifier enum is reproduced here:

builtin.CallModifier struct.zig
pub const CallModifier = enum {
    /// Equivalent to function call syntax.
    auto,

    /// Equivalent to async keyword used with function call syntax.
    async_kw,

    /// Prevents tail call optimization. This guarantees that the return
    /// address will point to the callsite, as opposed to the callsite's
    /// callsite. If the call is otherwise required to be tail-called
    /// or inlined, a compile error is emitted instead.
    never_tail,

    /// Guarantees that the call will not be inlined. If the call is
    /// otherwise required to be inlined, a compile error is emitted instead.
    never_inline,

    /// Asserts that the function call will not suspend. This allows a
    /// non-async function to call an async function.
    no_async,

    /// Guarantees that the call will be generated with tail call optimization.
    /// If this is not possible, a compile error is emitted instead.
    always_tail,

    /// Guarantees that the call will inlined at the callsite.
    /// If this is not possible, a compile error is emitted instead.
    always_inline,

    /// Evaluates the call at compile-time. If the call cannot be completed at
    /// compile-time, a compile error is emitted instead.
    compile_time,
};

@cDefine §

@cDefine(comptime name: []const u8, value) void

This function can only occur inside @cImport.

This appends #define $name $value to the @cImport temporary buffer.

To define without a value, like this:

#define _GNU_SOURCE

Use the void value, like this:

@cDefine("_GNU_SOURCE", {})

See also:

@cImport §

@cImport(expression) type

This function parses C code and imports the functions, types, variables, and compatible macro definitions into a new empty struct type, and then returns that type.

expression is interpreted at compile time. The builtin functions @cInclude, @cDefine, and @cUndef work within this expression, appending to a temporary buffer which is then parsed as C code.

Usually you should only have one @cImport in your entire application, because it saves the compiler from invoking clang multiple times, and prevents inline functions from being duplicated.

Reasons for having multiple @cImport expressions would be:

  • To avoid a symbol collision, for example if foo.h and bar.h both #define CONNECTION_COUNT
  • To analyze the C code with different preprocessor defines

See also:

@cInclude §

@cInclude(comptime path: []const u8) void

This function can only occur inside @cImport.

This appends #include <$path>\n to the c_import temporary buffer.

See also:

@clz §

@clz(operand: anytype) anytype

@TypeOf(operand) must be an integer type or an integer vector type.

operand may be an integer or vector.

Counts the number of most-significant (leading in a big-endian sense) zeroes in an integer - "count leading zeroes".

If operand is a comptime-known integer, the return type is comptime_int. Otherwise, the return type is an unsigned integer or vector of unsigned integers with the minimum number of bits that can represent the bit count of the integer type.

If operand is zero, @clz returns the bit width of integer type T.

See also:

@cmpxchgStrong §

@cmpxchgStrong(comptime T: type, ptr: *T, expected_value: T, new_value: T, success_order: AtomicOrder, fail_order: AtomicOrder) ?T

This function performs a strong atomic compare-and-exchange operation, returning null if the current value is not the given expected value. It's the equivalent of this code, except atomic:

not_atomic_cmpxchgStrong.zig
fn cmpxchgStrongButNotAtomic(comptime T: type, ptr: *T, expected_value: T, new_value: T) ?T {
    const old_value = ptr.*;
    if (old_value == expected_value) {
        ptr.* = new_value;
        return null;
    } else {
        return old_value;
    }
}

If you are using cmpxchg in a retry loop, @cmpxchgWeak is the better choice, because it can be implemented more efficiently in machine instructions.

T must be a pointer, a bool, a float, an integer or an enum.

@typeInfo(@TypeOf(ptr)).Pointer.alignment must be >= @sizeOf(T).

AtomicOrder can be found with @import("std").builtin.AtomicOrder.

See also:

@cmpxchgWeak §

@cmpxchgWeak(comptime T: type, ptr: *T, expected_value: T, new_value: T, success_order: AtomicOrder, fail_order: AtomicOrder) ?T

This function performs a weak atomic compare-and-exchange operation, returning null if the current value is not the given expected value. It's the equivalent of this code, except atomic:

cmpxchgWeakButNotAtomic
fn cmpxchgWeakButNotAtomic(comptime T: type, ptr: *T, expected_value: T, new_value: T) ?T {
    const old_value = ptr.*;
    if (old_value == expected_value and usuallyTrueButSometimesFalse()) {
        ptr.* = new_value;
        return null;
    } else {
        return old_value;
    }
}

If you are using cmpxchg in a retry loop, the sporadic failure will be no problem, and cmpxchgWeak is the better choice, because it can be implemented more efficiently in machine instructions. However if you need a stronger guarantee, use @cmpxchgStrong.

T must be a pointer, a bool, a float, an integer or an enum.

@typeInfo(@TypeOf(ptr)).Pointer.alignment must be >= @sizeOf(T).

AtomicOrder can be found with @import("std").builtin.AtomicOrder.

See also:

@compileError §

@compileError(comptime msg: []const u8) noreturn

This function, when semantically analyzed, causes a compile error with the message msg.

There are several ways that code avoids being semantically checked, such as using if or switch with compile time constants, and comptime functions.

@compileLog §

@compileLog(args: ...) void

This function prints the arguments passed to it at compile-time.

To prevent accidentally leaving compile log statements in a codebase, a compilation error is added to the build, pointing to the compile log statement. This error prevents code from being generated, but does not otherwise interfere with analysis.

This function can be used to do "printf debugging" on compile-time executing code.

test_compileLog_builtin.zig
const print = @import("std").debug.print;

const num1 = blk: {
    var val1: i32 = 99;
    @compileLog("comptime val1 = ", val1);
    val1 = val1 + 1;
    break :blk val1;
};

test "main" {
    @compileLog("comptime in main");

    print("Runtime in main, num1 = {}.\n", .{num1});
}
Shell
$ zig test test_compileLog_builtin.zig
docgen_tmp/test_compileLog_builtin.zig:11:5: error: found compile log statement
    @compileLog("comptime in main");
    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
docgen_tmp/test_compileLog_builtin.zig:5:5: note: also here
    @compileLog("comptime val1 = ", val1);
    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Compile Log Output:
@as(*const [16:0]u8, "comptime in main")
@as(*const [16:0]u8, "comptime val1 = "), @as(i32, 99)

@constCast §

@constCast(value: anytype) DestType

Remove const qualifier from a pointer.

@ctz §

@ctz(operand: anytype) anytype

@TypeOf(operand) must be an integer type or an integer vector type.

operand may be an integer or vector.

Counts the number of least-significant (trailing in a big-endian sense) zeroes in an integer - "count trailing zeroes".

If operand is a comptime-known integer, the return type is comptime_int. Otherwise, the return type is an unsigned integer or vector of unsigned integers with the minimum number of bits that can represent the bit count of the integer type.

If operand is zero, @ctz returns the bit width of integer type T.

See also:

@cUndef §

@cUndef(comptime name: []const u8) void

This function can only occur inside @cImport.

This appends #undef $name to the @cImport temporary buffer.

See also:

@cVaArg §

@cVaArg(operand: *std.builtin.VaList, comptime T: type) T

Implements the C macro va_arg.

See also:

@cVaCopy §

@cVaCopy(src: *std.builtin.VaList) std.builtin.VaList

Implements the C macro va_copy.

See also:

@cVaEnd §

@cVaEnd(src: *std.builtin.VaList) void

Implements the C macro va_end.

See also:

@cVaStart §

@cVaStart() std.builtin.VaList

Implements the C macro va_start. Only valid inside a variadic function.

See also:

@divExact §

@divExact(numerator: T, denominator: T) T

Exact division. Caller guarantees denominator != 0 and @divTrunc(numerator, denominator) * denominator == numerator.

  • @divExact(6, 3) == 2
  • @divExact(a, b) * b == a

For a function that returns a possible error code, use @import("std").math.divExact.

See also:

@divFloor §

@divFloor(numerator: T, denominator: T) T

Floored division. Rounds toward negative infinity. For unsigned integers it is the same as numerator / denominator. Caller guarantees denominator != 0 and !(@typeInfo(T) == .Int and T.is_signed and numerator == std.math.minInt(T) and denominator == -1).

  • @divFloor(-5, 3) == -2
  • (@divFloor(a, b) * b) + @mod(a, b) == a

For a function that returns a possible error code, use @import("std").math.divFloor.

See also:

@divTrunc §

@divTrunc(numerator: T, denominator: T) T

Truncated division. Rounds toward zero. For unsigned integers it is the same as numerator / denominator. Caller guarantees denominator != 0 and !(@typeInfo(T) == .Int and T.is_signed and numerator == std.math.minInt(T) and denominator == -1).

  • @divTrunc(-5, 3) == -1
  • (@divTrunc(a, b) * b) + @rem(a, b) == a

For a function that returns a possible error code, use @import("std").math.divTrunc.

See also:

@embedFile §

@embedFile(comptime path: []const u8) *const [N:0]u8

This function returns a compile time constant pointer to null-terminated, fixed-size array with length equal to the byte count of the file given by path. The contents of the array are the contents of the file. This is equivalent to a string literal with the file contents.

path is absolute or relative to the current file, just like @import.

See also:

@enumFromInt §

@enumFromInt(integer: anytype) anytype

Converts an integer into an enum value. The return type is the inferred result type.

Attempting to convert an integer which represents no value in the chosen enum type invokes safety-checked Undefined Behavior.

See also:

@errorFromInt §

@errorFromInt(value: std.meta.Int(.unsigned, @bitSizeOf(anyerror))) anyerror

Converts from the integer representation of an error into The Global Error Set type.

It is generally recommended to avoid this cast, as the integer representation of an error is not stable across source code changes.

Attempting to convert an integer that does not correspond to any error results in safety-protected Undefined Behavior.

See also:

@errorName §

@errorName(err: anyerror) [:0]const u8

This function returns the string representation of an error. The string representation of error.OutOfMem is "OutOfMem".

If there are no calls to @errorName in an entire application, or all calls have a compile-time known value for err, then no error name table will be generated.

@errorReturnTrace §

@errorReturnTrace() ?*builtin.StackTrace

If the binary is built with error return tracing, and this function is invoked in a function that calls a function with an error or error union return type, returns a stack trace object. Otherwise returns null.

@errorCast §

@errorCast(value: anytype) anytype

Converts an error set or error union value from one error set to another error set. The return type is the inferred result type. Attempting to convert an error which is not in the destination error set results in safety-protected Undefined Behavior.

@export §

@export(declaration, comptime options: std.builtin.ExportOptions) void

Creates a symbol in the output object file.

declaration must be one of two things:

This builtin can be called from a comptime block to conditionally export symbols. When declaration is a function with the C calling convention and options.linkage is Strong, this is equivalent to the export keyword used on a function:

export_builtin.zig
comptime {
    @export(internalName, .{ .name = "foo", .linkage = .strong });
}

fn internalName() callconv(.C) void {}
Shell
$ zig build-obj export_builtin.zig

This is equivalent to:

export_builtin_equivalent_code.zig
export fn foo() void {}
Shell
$ zig build-obj export_builtin_equivalent_code.zig

Note that even when using export, the @"foo" syntax for identifiers can be used to choose any string for the symbol name:

export_any_symbol_name.zig
export fn @"A function name that is a complete sentence."() void {}
Shell
$ zig build-obj export_any_symbol_name.zig

When looking at the resulting object, you can see the symbol is used verbatim:

00000000000001f0 T A function name that is a complete sentence.

See also:

@extern §

@extern(T: type, comptime options: std.builtin.ExternOptions) T

Creates a reference to an external symbol in the output object file. T must be a pointer type.

See also:

@fence §

@fence(order: AtomicOrder) void

The fence function is used to introduce happens-before edges between operations.

AtomicOrder can be found with @import("std").builtin.AtomicOrder.

See also:

@field §

@field(lhs: anytype, comptime field_name: []const u8) (field)

Performs field access by a compile-time string. Works on both fields and declarations.

test_field_builtin.zig
const std = @import("std");

const Point = struct {
    x: u32,
    y: u32,

    pub var z: u32 = 1;
};

test "field access by string" {
    const expect = std.testing.expect;
    var p = Point{ .x = 0, .y = 0 };

    @field(p, "x") = 4;
    @field(p, "y") = @field(p, "x") + 1;

    try expect(@field(p, "x") == 4);
    try expect(@field(p, "y") == 5);
}

test "decl access by string" {
    const expect = std.testing.expect;

    try expect(@field(Point, "z") == 1);

    @field(Point, "z") = 2;
    try expect(@field(Point, "z") == 2);
}
Shell
$ zig test test_field_builtin.zig
1/2 test_field_builtin.test.field access by string... OK
2/2 test_field_builtin.test.decl access by string... OK
All 2 tests passed.

@fieldParentPtr §

@fieldParentPtr(comptime field_name: []const u8, field_ptr: *T) anytype

Given a pointer to a field, returns the base pointer of a struct.

@floatCast §

@floatCast(value: anytype) anytype

Convert from one float type to another. This cast is safe, but may cause the numeric value to lose precision. The return type is the inferred result type.

@floatFromInt §

@floatFromInt(int: anytype) anytype

Converts an integer to the closest floating point representation. The return type is the inferred result type. To convert the other way, use @intFromFloat. This operation is legal for all values of all integer types.

@frameAddress §

@frameAddress() usize

This function returns the base pointer of the current stack frame.

The implications of this are target-specific and not consistent across all platforms. The frame address may not be available in release mode due to aggressive optimizations.

This function is only valid within function scope.

@hasDecl §

@hasDecl(comptime Container: type, comptime name: []const u8) bool

Returns whether or not a container has a declaration matching name.

test_hasDecl_builtin.zig
const std = @import("std");
const expect = std.testing.expect;

const Foo = struct {
    nope: i32,

    pub var blah = "xxx";
    const hi = 1;
};

test "@hasDecl" {
    try expect(@hasDecl(Foo, "blah"));

    // Even though `hi` is private, @hasDecl returns true because this test is
    // in the same file scope as Foo. It would return false if Foo was declared
    // in a different file.
    try expect(@hasDecl(Foo, "hi"));

    // @hasDecl is for declarations; not fields.
    try expect(!@hasDecl(Foo, "nope"));
    try expect(!@hasDecl(Foo, "nope1234"));
}
Shell
$ zig test test_hasDecl_builtin.zig
1/1 test_hasDecl_builtin.test.@hasDecl... OK
All 1 tests passed.

See also:

@hasField §

@hasField(comptime Container: type, comptime name: []const u8) bool

Returns whether the field name of a struct, union, or enum exists.

The result is a compile time constant.

It does not include functions, variables, or constants.

See also:

@import §

@import(comptime path: []const u8) type

This function finds a zig file corresponding to path and adds it to the build, if it is not already added.

Zig source files are implicitly structs, with a name equal to the file's basename with the extension truncated. @import returns the struct type corresponding to the file.

Declarations which have the pub keyword may be referenced from a different source file than the one they are declared in.

path can be a relative path or it can be the name of a package. If it is a relative path, it is relative to the file that contains the @import function call.

The following packages are always available:

  • @import("std") - Zig Standard Library
  • @import("builtin") - Target-specific information The command zig build-exe --show-builtin outputs the source to stdout for reference.
  • @import("root") - Root source file This is usually src/main.zig but depends on what file is built.

See also:

@inComptime §

@inComptime() bool

Returns whether the builtin was run in a comptime context. The result is a compile-time constant.

This can be used to provide alternative, comptime-friendly implementations of functions. It should not be used, for instance, to exclude certain functions from being evaluated at comptime.

See also:

@intCast §

@intCast(int: anytype) anytype

Converts an integer to another integer while keeping the same numerical value. The return type is the inferred result type. Attempting to convert a number which is out of range of the destination type results in safety-protected Undefined Behavior.

test_intCast_builtin.zig
test "integer cast panic" {
    var a: u16 = 0xabcd; // runtime-known
    _ = &a;
    const b: u8 = @intCast(a);
    _ = b;
}
Shell
$ zig test test_intCast_builtin.zig
1/1 test_intCast_builtin.test.integer cast panic... thread 143533 panic: integer cast truncated bits
/home/andy/src/zig-0.12.x/docgen_tmp/test_intCast_builtin.zig:4:19: 0x1038fc2 in test.integer cast panic (test)
    const b: u8 = @intCast(a);
                  ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:158:25: 0x10444dd in mainTerminal (test)
        if (test_fn.func()) |_| {
                        ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:35:28: 0x103a3ab in main (test)
        return mainTerminal();
                           ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x10394e9 in posixCallMainAndExit (test)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1039051 in _start (test)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
error: the following test command crashed:
/home/andy/src/zig-0.12.x/zig-cache/o/c3fb5a1f8a06a2a577814bd80ee0712e/test

To truncate the significant bits of a number out of range of the destination type, use @truncate.

If T is comptime_int, then this is semantically equivalent to Type Coercion.

@intFromBool §

@intFromBool(value: bool) u1

Converts true to @as(u1, 1) and false to @as(u1, 0).

@intFromEnum §

@intFromEnum(enum_or_tagged_union: anytype) anytype

Converts an enumeration value into its integer tag type. When a tagged union is passed, the tag value is used as the enumeration value.

If there is only one possible enum value, the result is a comptime_int known at comptime.

See also:

@intFromError §

@intFromError(err: anytype) std.meta.Int(.unsigned, @bitSizeOf(anyerror))

Supports the following types:

Converts an error to the integer representation of an error.

It is generally recommended to avoid this cast, as the integer representation of an error is not stable across source code changes.

See also:

@intFromFloat §

@intFromFloat(float: anytype) anytype

Converts the integer part of a floating point number to the inferred result type.

If the integer part of the floating point number cannot fit in the destination type, it invokes safety-checked Undefined Behavior.

See also:

@intFromPtr §

@intFromPtr(value: anytype) usize

Converts value to a usize which is the address of the pointer. value can be *T or ?*T.

To convert the other way, use @ptrFromInt

@max §

@max(a: T, b: T) T

Returns the maximum value of a and b. This builtin accepts integers, floats, and vectors of either. In the latter case, the operation is performed element wise.

NaNs are handled as follows: if one of the operands of a (pairwise) operation is NaN, the other operand is returned. If both operands are NaN, NaN is returned.

See also:

@memcpy §

@memcpy(noalias dest, noalias source) void

This function copies bytes from one region of memory to another.

dest must be a mutable slice, a mutable pointer to an array, or a mutable many-item pointer. It may have any alignment, and it may have any element type.

source must be a slice, a pointer to an array, or a many-item pointer. It may have any alignment, and it may have any element type.

The source element type must support Type Coercion into the dest element type. The element types may have different ABI size, however, that may incur a performance penalty.

Similar to for loops, at least one of source and dest must provide a length, and if two lengths are provided, they must be equal.

Finally, the two memory regions must not overlap.

@memset §

@memset(dest, elem) void

This function sets all the elements of a memory region to elem.

dest must be a mutable slice or a mutable pointer to an array. It may have any alignment, and it may have any element type.

elem is coerced to the element type of dest.

For securely zeroing out sensitive contents from memory, you should use std.crypto.utils.secureZero

@min §

@min(a: T, b: T) T

Returns the minimum value of a and b. This builtin accepts integers, floats, and vectors of either. In the latter case, the operation is performed element wise.

NaNs are handled as follows: if one of the operands of a (pairwise) operation is NaN, the other operand is returned. If both operands are NaN, NaN is returned.

See also:

@wasmMemorySize §

@wasmMemorySize(index: u32) usize

This function returns the size of the Wasm memory identified by index as an unsigned value in units of Wasm pages. Note that each Wasm page is 64KB in size.

This function is a low level intrinsic with no safety mechanisms usually useful for allocator designers targeting Wasm. So unless you are writing a new allocator from scratch, you should use something like @import("std").heap.WasmPageAllocator.

See also:

@wasmMemoryGrow §

@wasmMemoryGrow(index: u32, delta: usize) isize

This function increases the size of the Wasm memory identified by index by delta in units of unsigned number of Wasm pages. Note that each Wasm page is 64KB in size. On success, returns previous memory size; on failure, if the allocation fails, returns -1.

This function is a low level intrinsic with no safety mechanisms usually useful for allocator designers targeting Wasm. So unless you are writing a new allocator from scratch, you should use something like @import("std").heap.WasmPageAllocator.

test_wasmMemoryGrow_builtin.zig
const std = @import("std");
const native_arch = @import("builtin").target.cpu.arch;
const expect = std.testing.expect;

test "@wasmMemoryGrow" {
    if (native_arch != .wasm32) return error.SkipZigTest;

    const prev = @wasmMemorySize(0);
    try expect(prev == @wasmMemoryGrow(0, 1));
    try expect(prev + 1 == @wasmMemorySize(0));
}
Shell
$ zig test test_wasmMemoryGrow_builtin.zig
1/1 test_wasmMemoryGrow_builtin.test.@wasmMemoryGrow... SKIP
0 passed; 1 skipped; 0 failed.

See also:

@mod §

@mod(numerator: T, denominator: T) T

Modulus division. For unsigned integers this is the same as numerator % denominator. Caller guarantees denominator > 0, otherwise the operation will result in a Remainder Division by Zero when runtime safety checks are enabled.

  • @mod(-5, 3) == 1
  • (@divFloor(a, b) * b) + @mod(a, b) == a

For a function that returns an error code, see @import("std").math.mod.

See also:

@mulWithOverflow §

@mulWithOverflow(a: anytype, b: anytype) struct { @TypeOf(a, b), u1 }

Performs a * b and returns a tuple with the result and a possible overflow bit.

@panic §

@panic(message: []const u8) noreturn

Invokes the panic handler function. By default the panic handler function calls the public panic function exposed in the root source file, or if there is not one specified, the std.builtin.default_panic function from std/builtin.zig.

Generally it is better to use @import("std").debug.panic. However, @panic can be useful for 2 scenarios:

  • From library code, calling the programmer's panic function if they exposed one in the root source file.
  • When mixing C and Zig code, calling the canonical panic implementation across multiple .o files.

See also:

@popCount §

@popCount(operand: anytype) anytype

@TypeOf(operand) must be an integer type.

operand may be an integer or vector.

Counts the number of bits set in an integer - "population count".

If operand is a comptime-known integer, the return type is comptime_int. Otherwise, the return type is an unsigned integer or vector of unsigned integers with the minimum number of bits that can represent the bit count of the integer type.

See also:

@prefetch §

@prefetch(ptr: anytype, comptime options: PrefetchOptions) void

This builtin tells the compiler to emit a prefetch instruction if supported by the target CPU. If the target CPU does not support the requested prefetch instruction, this builtin is a no-op. This function has no effect on the behavior of the program, only on the performance characteristics.

The ptr argument may be any pointer type and determines the memory address to prefetch. This function does not dereference the pointer, it is perfectly legal to pass a pointer to invalid memory to this function and no illegal behavior will result.

PrefetchOptions can be found with @import("std").builtin.PrefetchOptions.

@ptrCast §

@ptrCast(value: anytype) anytype

Converts a pointer of one type to a pointer of another type. The return type is the inferred result type.

Optional Pointers are allowed. Casting an optional pointer which is null to a non-optional pointer invokes safety-checked Undefined Behavior.

@ptrCast cannot be used for:

  • Removing const qualifier, use @constCast.
  • Removing volatile qualifier, use @volatileCast.
  • Changing pointer address space, use @addrSpaceCast.
  • Increasing pointer alignment, use @alignCast.
  • Casting a non-slice pointer to a slice, use slicing syntax ptr[start..end].

@ptrFromInt §

@ptrFromInt(address: usize) anytype

Converts an integer to a pointer. The return type is the inferred result type. To convert the other way, use @intFromPtr. Casting an address of 0 to a destination type which in not optional and does not have the allowzero attribute will result in a Pointer Cast Invalid Null panic when runtime safety checks are enabled.

If the destination pointer type does not allow address zero and address is zero, this invokes safety-checked Undefined Behavior.

@rem §

@rem(numerator: T, denominator: T) T

Remainder division. For unsigned integers this is the same as numerator % denominator. Caller guarantees denominator > 0, otherwise the operation will result in a Remainder Division by Zero when runtime safety checks are enabled.

  • @rem(-5, 3) == -2
  • (@divTrunc(a, b) * b) + @rem(a, b) == a

For a function that returns an error code, see @import("std").math.rem.

See also:

@returnAddress §

@returnAddress() usize

This function returns the address of the next machine code instruction that will be executed when the current function returns.

The implications of this are target-specific and not consistent across all platforms.

This function is only valid within function scope. If the function gets inlined into a calling function, the returned address will apply to the calling function.

@select §

@select(comptime T: type, pred: @Vector(len, bool), a: @Vector(len, T), b: @Vector(len, T)) @Vector(len, T)

Selects values element-wise from a or b based on pred. If pred[i] is true, the corresponding element in the result will be a[i] and otherwise b[i].

See also:

@setAlignStack §

@setAlignStack(comptime alignment: u29) void

Ensures that a function will have a stack alignment of at least alignment bytes.

@setCold §

@setCold(comptime is_cold: bool) void

Tells the optimizer that the current function is (or is not) rarely called. This function is only valid within function scope.

@setEvalBranchQuota §

@setEvalBranchQuota(comptime new_quota: u32) void

Increase the maximum number of backwards branches that compile-time code execution can use before giving up and making a compile error.

If the new_quota is smaller than the default quota (1000) or a previously explicitly set quota, it is ignored.

Example:

test_without_setEvalBranchQuota_builtin.zig
test "foo" {
    comptime {
        var i = 0;
        while (i < 1001) : (i += 1) {}
    }
}
Shell
$ zig test test_without_setEvalBranchQuota_builtin.zig
docgen_tmp/test_without_setEvalBranchQuota_builtin.zig:4:9: error: evaluation exceeded 1000 backwards branches
        while (i < 1001) : (i += 1) {}
        ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
docgen_tmp/test_without_setEvalBranchQuota_builtin.zig:4:9: note: use @setEvalBranchQuota() to raise the branch limit from 1000

Now we use @setEvalBranchQuota:

test_setEvalBranchQuota_builtin.zig
test "foo" {
    comptime {
        @setEvalBranchQuota(1001);
        var i = 0;
        while (i < 1001) : (i += 1) {}
    }
}
Shell
$ zig test test_setEvalBranchQuota_builtin.zig
1/1 test_setEvalBranchQuota_builtin.test.foo... OK
All 1 tests passed.

See also:

@setFloatMode §

@setFloatMode(comptime mode: FloatMode) void

Changes the current scope's rules about how floating point operations are defined.

  • Strict (default) - Floating point operations follow strict IEEE compliance.
  • Optimized - Floating point operations may do all of the following:
    • Assume the arguments and result are not NaN. Optimizations are required to retain defined behavior over NaNs, but the value of the result is undefined.
    • Assume the arguments and result are not +/-Inf. Optimizations are required to retain defined behavior over +/-Inf, but the value of the result is undefined.
    • Treat the sign of a zero argument or result as insignificant.
    • Use the reciprocal of an argument rather than perform division.
    • Perform floating-point contraction (e.g. fusing a multiply followed by an addition into a fused multiply-add).
    • Perform algebraically equivalent transformations that may change results in floating point (e.g. reassociate).
    This is equivalent to -ffast-math in GCC.

The floating point mode is inherited by child scopes, and can be overridden in any scope. You can set the floating point mode in a struct or module scope by using a comptime block.

FloatMode can be found with @import("std").builtin.FloatMode.

See also:

@setRuntimeSafety §

@setRuntimeSafety(comptime safety_on: bool) void

Sets whether runtime safety checks are enabled for the scope that contains the function call.

test_setRuntimeSafety_builtin.zig
test "@setRuntimeSafety" {
    // The builtin applies to the scope that it is called in. So here, integer overflow
    // will not be caught in ReleaseFast and ReleaseSmall modes:
    // var x: u8 = 255;
    // x += 1; // undefined behavior in ReleaseFast/ReleaseSmall modes.
    {
        // However this block has safety enabled, so safety checks happen here,
        // even in ReleaseFast and ReleaseSmall modes.
        @setRuntimeSafety(true);
        var x: u8 = 255;
        x += 1;

        {
            // The value can be overridden at any scope. So here integer overflow
            // would not be caught in any build mode.
            @setRuntimeSafety(false);
            // var x: u8 = 255;
            // x += 1; // undefined behavior in all build modes.
        }
    }
}
Shell
$ zig test test_setRuntimeSafety_builtin.zig -OReleaseFast
1/1 test_setRuntimeSafety_builtin.test.@setRuntimeSafety... thread 143730 panic: integer overflow
/home/andy/src/zig-0.12.x/docgen_tmp/test_setRuntimeSafety_builtin.zig:11:11: 0x100a1b4 in test.@setRuntimeSafety (test)
        x += 1;
          ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:158:25: 0x100b51d in main (test)
        if (test_fn.func()) |_| {
                        ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x100a296 in posixCallMainAndExit (test)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x100a1d1 in _start (test)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
error: the following test command crashed:
/home/andy/src/zig-0.12.x/zig-cache/o/79158468d8c94d5445a6c8289c47aafe/test

Note: it is planned to replace @setRuntimeSafety with @optimizeFor

@shlExact §

@shlExact(value: T, shift_amt: Log2T) T

Performs the left shift operation (<<). For unsigned integers, the result is undefined if any 1 bits are shifted out. For signed integers, the result is undefined if any bits that disagree with the resultant sign bit are shifted out.

The type of shift_amt is an unsigned integer with log2(@typeInfo(T).Int.bits) bits. This is because shift_amt >= @typeInfo(T).Int.bits is undefined behavior.

comptime_int is modeled as an integer with an infinite number of bits, meaning that in such case, @shlExact always produces a result and cannot produce a compile error.

See also:

@shlWithOverflow §

@shlWithOverflow(a: anytype, shift_amt: Log2T) struct { @TypeOf(a), u1 }

Performs a << b and returns a tuple with the result and a possible overflow bit.

The type of shift_amt is an unsigned integer with log2(@typeInfo(@TypeOf(a)).Int.bits) bits. This is because shift_amt >= @typeInfo(@TypeOf(a)).Int.bits is undefined behavior.

See also:

@shrExact §

@shrExact(value: T, shift_amt: Log2T) T

Performs the right shift operation (>>). Caller guarantees that the shift will not shift any 1 bits out.

The type of shift_amt is an unsigned integer with log2(@typeInfo(T).Int.bits) bits. This is because shift_amt >= @typeInfo(T).Int.bits is undefined behavior.

See also:

@shuffle §

@shuffle(comptime E: type, a: @Vector(a_len, E), b: @Vector(b_len, E), comptime mask: @Vector(mask_len, i32)) @Vector(mask_len, E)

Constructs a new vector by selecting elements from a and b based on mask.

Each element in mask selects an element from either a or b. Positive numbers select from a starting at 0. Negative values select from b, starting at -1 and going down. It is recommended to use the ~ operator for indexes from b so that both indexes can start from 0 (i.e. ~@as(i32, 0) is -1).

For each element of mask, if it or the selected value from a or b is undefined, then the resulting element is undefined.

a_len and b_len may differ in length. Out-of-bounds element indexes in mask result in compile errors.

If a or b is undefined, it is equivalent to a vector of all undefined with the same length as the other vector. If both vectors are undefined, @shuffle returns a vector with all elements undefined.

E must be an integer, float, pointer, or bool. The mask may be any vector length, and its length determines the result length.

test_shuffle_builtin.zig
const std = @import("std");
const expect = std.testing.expect;

test "vector @shuffle" {
    const a = @Vector(7, u8){ 'o', 'l', 'h', 'e', 'r', 'z', 'w' };
    const b = @Vector(4, u8){ 'w', 'd', '!', 'x' };

    // To shuffle within a single vector, pass undefined as the second argument.
    // Notice that we can re-order, duplicate, or omit elements of the input vector
    const mask1 = @Vector(5, i32){ 2, 3, 1, 1, 0 };
    const res1: @Vector(5, u8) = @shuffle(u8, a, undefined, mask1);
    try expect(std.mem.eql(u8, &@as([5]u8, res1), "hello"));

    // Combining two vectors
    const mask2 = @Vector(6, i32){ -1, 0, 4, 1, -2, -3 };
    const res2: @Vector(6, u8) = @shuffle(u8, a, b, mask2);
    try expect(std.mem.eql(u8, &@as([6]u8, res2), "world!"));
}
Shell
$ zig test test_shuffle_builtin.zig
1/1 test_shuffle_builtin.test.vector @shuffle... OK
All 1 tests passed.

See also:

@sizeOf §

@sizeOf(comptime T: type) comptime_int

This function returns the number of bytes it takes to store T in memory. The result is a target-specific compile time constant.

This size may contain padding bytes. If there were two consecutive T in memory, the padding would be the offset in bytes between element at index 0 and the element at index 1. For integer, consider whether you want to use @sizeOf(T) or @typeInfo(T).Int.bits.

This function measures the size at runtime. For types that are disallowed at runtime, such as comptime_int and type, the result is 0.

See also:

@splat §

@splat(scalar: anytype) anytype

Produces a vector where each element is the value scalar. The return type and thus the length of the vector is inferred.

test_splat_builtin.zig
const std = @import("std");
const expect = std.testing.expect;

test "vector @splat" {
    const scalar: u32 = 5;
    const result: @Vector(4, u32) = @splat(scalar);
    try expect(std.mem.eql(u32, &@as([4]u32, result), &[_]u32{ 5, 5, 5, 5 }));
}
Shell
$ zig test test_splat_builtin.zig
1/1 test_splat_builtin.test.vector @splat... OK
All 1 tests passed.

scalar must be an integer, bool, float, or pointer.

See also:

@reduce §

@reduce(comptime op: std.builtin.ReduceOp, value: anytype) E

Transforms a vector into a scalar value (of type E) by performing a sequential horizontal reduction of its elements using the specified operator op.

Not every operator is available for every vector element type:

  • Every operator is available for integer vectors.
  • .And, .Or, .Xor are additionally available for bool vectors,
  • .Min, .Max, .Add, .Mul are additionally available for floating point vectors,

Note that .Add and .Mul reductions on integral types are wrapping; when applied on floating point types the operation associativity is preserved, unless the float mode is set to Optimized.

test_reduce_builtin.zig
const std = @import("std");
const expect = std.testing.expect;

test "vector @reduce" {
    const V = @Vector(4, i32);
    const value = V{ 1, -1, 1, -1 };
    const result = value > @as(V, @splat(0));
    // result is { true, false, true, false };
    try comptime expect(@TypeOf(result) == @Vector(4, bool));
    const is_all_true = @reduce(.And, result);
    try comptime expect(@TypeOf(is_all_true) == bool);
    try expect(is_all_true == false);
}
Shell
$ zig test test_reduce_builtin.zig
1/1 test_reduce_builtin.test.vector @reduce... OK
All 1 tests passed.

See also:

@src §

@src() std.builtin.SourceLocation

Returns a SourceLocation struct representing the function's name and location in the source code. This must be called in a function.

test_src_builtin.zig
const std = @import("std");
const expect = std.testing.expect;

test "@src" {
    try doTheTest();
}

fn doTheTest() !void {
    const src = @src();

    try expect(src.line == 9);
    try expect(src.column == 17);
    try expect(std.mem.endsWith(u8, src.fn_name, "doTheTest"));
    try expect(std.mem.endsWith(u8, src.file, "test_src_builtin.zig"));
}
Shell
$ zig test test_src_builtin.zig
1/1 test_src_builtin.test.@src... OK
All 1 tests passed.

@sqrt §

@sqrt(value: anytype) @TypeOf(value)

Performs the square root of a floating point number. Uses a dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@sin §

@sin(value: anytype) @TypeOf(value)

Sine trigonometric function on a floating point number in radians. Uses a dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@cos §

@cos(value: anytype) @TypeOf(value)

Cosine trigonometric function on a floating point number in radians. Uses a dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@tan §

@tan(value: anytype) @TypeOf(value)

Tangent trigonometric function on a floating point number in radians. Uses a dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@exp §

@exp(value: anytype) @TypeOf(value)

Base-e exponential function on a floating point number. Uses a dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@exp2 §

@exp2(value: anytype) @TypeOf(value)

Base-2 exponential function on a floating point number. Uses a dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@log §

@log(value: anytype) @TypeOf(value)

Returns the natural logarithm of a floating point number. Uses a dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@log2 §

@log2(value: anytype) @TypeOf(value)

Returns the logarithm to the base 2 of a floating point number. Uses a dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@log10 §

@log10(value: anytype) @TypeOf(value)

Returns the logarithm to the base 10 of a floating point number. Uses a dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@abs §

@abs(value: anytype) anytype

Returns the absolute value of an integer or a floating point number. Uses a dedicated hardware instruction when available. The return type is always an unsigned integer of the same bit width as the operand if the operand is an integer. Unsigned integer operands are supported. The builtin cannot overflow for signed integer operands.

Supports Floats, Integers and Vectors of floats or integers.

@floor §

@floor(value: anytype) @TypeOf(value)

Returns the largest integral value not greater than the given floating point number. Uses a dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@ceil §

@ceil(value: anytype) @TypeOf(value)

Returns the smallest integral value not less than the given floating point number. Uses a dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@trunc §

@trunc(value: anytype) @TypeOf(value)

Rounds the given floating point number to an integer, towards zero. Uses a dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@round §

@round(value: anytype) @TypeOf(value)

Rounds the given floating point number to an integer, away from zero. Uses a dedicated hardware instruction when available.

Supports Floats and Vectors of floats.

@subWithOverflow §

@subWithOverflow(a: anytype, b: anytype) struct { @TypeOf(a, b), u1 }

Performs a - b and returns a tuple with the result and a possible overflow bit.

@tagName §

@tagName(value: anytype) [:0]const u8

Converts an enum value or union value to a string literal representing the name.

If the enum is non-exhaustive and the tag value does not map to a name, it invokes safety-checked Undefined Behavior.

@This §

@This() type

Returns the innermost struct, enum, or union that this function call is inside. This can be useful for an anonymous struct that needs to refer to itself:

test_this_builtin.zig
const std = @import("std");
const expect = std.testing.expect;

test "@This()" {
    var items = [_]i32{ 1, 2, 3, 4 };
    const list = List(i32){ .items = items[0..] };
    try expect(list.length() == 4);
}

fn List(comptime T: type) type {
    return struct {
        const Self = @This();

        items: []T,

        fn length(self: Self) usize {
            return self.items.len;
        }
    };
}
Shell
$ zig test test_this_builtin.zig
1/1 test_this_builtin.test.@This()... OK
All 1 tests passed.

When @This() is used at file scope, it returns a reference to the struct that corresponds to the current file.

@trap §

@trap() noreturn

This function inserts a platform-specific trap/jam instruction which can be used to exit the program abnormally. This may be implemented by explicitly emitting an invalid instruction which may cause an illegal instruction exception of some sort. Unlike for @breakpoint(), execution does not continue after this point.

Outside function scope, this builtin causes a compile error.

See also:

@truncate §

@truncate(integer: anytype) anytype

This function truncates bits from an integer type, resulting in a smaller or same-sized integer type. The return type is the inferred result type.

This function always truncates the significant bits of the integer, regardless of endianness on the target platform.

Calling @truncate on a number out of range of the destination type is well defined and working code:

test_truncate_builtin.zig
const std = @import("std");
const expect = std.testing.expect;

test "integer truncation" {
    const a: u16 = 0xabcd;
    const b: u8 = @truncate(a);
    try expect(b == 0xcd);
}
Shell
$ zig test test_truncate_builtin.zig
1/1 test_truncate_builtin.test.integer truncation... OK
All 1 tests passed.

Use @intCast to convert numbers guaranteed to fit the destination type.

@Type §

@Type(comptime info: std.builtin.Type) type

This function is the inverse of @typeInfo. It reifies type information into a type.

It is available for the following types:

@typeInfo §

@typeInfo(comptime T: type) std.builtin.Type

Provides type reflection.

Type information of structs, unions, enums, and error sets has fields which are guaranteed to be in the same order as appearance in the source file.

Type information of structs, unions, enums, and opaques has declarations, which are also guaranteed to be in the same order as appearance in the source file.

@typeName §

@typeName(T: type) *const [N:0]u8

This function returns the string representation of a type, as an array. It is equivalent to a string literal of the type name. The returned type name is fully qualified with the parent namespace included as part of the type name with a series of dots.

@TypeOf §

@TypeOf(...) type

@TypeOf is a special builtin function that takes any (nonzero) number of expressions as parameters and returns the type of the result, using Peer Type Resolution.

The expressions are evaluated, however they are guaranteed to have no runtime side-effects:

test_TypeOf_builtin.zig
const std = @import("std");
const expect = std.testing.expect;

test "no runtime side effects" {
    var data: i32 = 0;
    const T = @TypeOf(foo(i32, &data));
    try comptime expect(T == i32);
    try expect(data == 0);
}

fn foo(comptime T: type, ptr: *T) T {
    ptr.* += 1;
    return ptr.*;
}
Shell
$ zig test test_TypeOf_builtin.zig
1/1 test_TypeOf_builtin.test.no runtime side effects... OK
All 1 tests passed.

@unionInit §

@unionInit(comptime Union: type, comptime active_field_name: []const u8, init_expr) Union

This is the same thing as union initialization syntax, except that the field name is a comptime-known value rather than an identifier token.

@unionInit forwards its result location to init_expr.

@Vector §

@Vector(len: comptime_int, Element: type) type

Creates Vectors.

@volatileCast §

@volatileCast(value: anytype) DestType

Remove volatile qualifier from a pointer.

@workGroupId §

@workGroupId(comptime dimension: u32) u32

Returns the index of the work group in the current kernel invocation in dimension dimension.

@workGroupSize §

@workGroupSize(comptime dimension: u32) u32

Returns the number of work items that a work group has in dimension dimension.

@workItemId §

@workItemId(comptime dimension: u32) u32

Returns the index of the work item in the work group in dimension dimension. This function returns values between 0 (inclusive) and @workGroupSize(dimension) (exclusive).

Build Mode §

Zig has four build modes:

To add standard build options to a build.zig file:

build.zig
const std = @import("std");

pub fn build(b: *std.Build) void {
    const optimize = b.standardOptimizeOption(.{});
    const exe = b.addExecutable(.{
        .name = "example",
        .root_source_file = .{ .path = "example.zig" },
        .optimize = optimize,
    });
    b.default_step.dependOn(&exe.step);
}

This causes these options to be available:

-Doptimize=Debug
Optimizations off and safety on (default)
-Doptimize=ReleaseSafe
Optimizations on and safety on
-Doptimize=ReleaseFast
Optimizations on and safety off
-Doptimize=ReleaseSmall
Size optimizations on and safety off

Debug §

Shell
$ zig build-exe example.zig
  • Fast compilation speed
  • Safety checks enabled
  • Slow runtime performance
  • Large binary size
  • No reproducible build requirement

ReleaseFast §

Shell
$ zig build-exe example.zig -O ReleaseFast
  • Fast runtime performance
  • Safety checks disabled
  • Slow compilation speed
  • Large binary size
  • Reproducible build

ReleaseSafe §

Shell
$ zig build-exe example.zig -O ReleaseSafe
  • Medium runtime performance
  • Safety checks enabled
  • Slow compilation speed
  • Large binary size
  • Reproducible build

ReleaseSmall §

Shell
$ zig build-exe example.zig -O ReleaseSmall
  • Medium runtime performance
  • Safety checks disabled
  • Slow compilation speed
  • Small binary size
  • Reproducible build

See also:

Single Threaded Builds §

Zig has a compile option -fsingle-threaded which has the following effects:

  • All Thread Local Variables are treated as regular Container Level Variables.
  • The overhead of Async Functions becomes equivalent to function call overhead.
  • The @import("builtin").single_threaded becomes true and therefore various userland APIs which read this variable become more efficient. For example std.Mutex becomes an empty data structure and all of its functions become no-ops.

Undefined Behavior §

Zig has many instances of undefined behavior. If undefined behavior is detected at compile-time, Zig emits a compile error and refuses to continue. Most undefined behavior that cannot be detected at compile-time can be detected at runtime. In these cases, Zig has safety checks. Safety checks can be disabled on a per-block basis with @setRuntimeSafety. The ReleaseFast and ReleaseSmall build modes disable all safety checks (except where overridden by @setRuntimeSafety) in order to facilitate optimizations.

When a safety check fails, Zig crashes with a stack trace, like this:

test_undefined_behavior.zig
test "safety check" {
    unreachable;
}
Shell
$ zig test test_undefined_behavior.zig
1/1 test_undefined_behavior.test.safety check... thread 144198 panic: reached unreachable code
/home/andy/src/zig-0.12.x/docgen_tmp/test_undefined_behavior.zig:2:5: 0x1038f90 in test.safety check (test)
    unreachable;
    ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:158:25: 0x10444ad in mainTerminal (test)
        if (test_fn.func()) |_| {
                        ^
/home/andy/src/zig-0.12.x/lib/compiler/test_runner.zig:35:28: 0x103a37b in main (test)
        return mainTerminal();
                           ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x10394b9 in posixCallMainAndExit (test)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1039021 in _start (test)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
error: the following test command crashed:
/home/andy/src/zig-0.12.x/zig-cache/o/374d76048d6f88ec22ca7f4159c38f71/test

Reaching Unreachable Code §

At compile-time:

test_comptime_reaching_unreachable.zig
comptime {
    assert(false);
}
fn assert(ok: bool) void {
    if (!ok) unreachable; // assertion failure
}
Shell
$ zig test test_comptime_reaching_unreachable.zig
docgen_tmp/test_comptime_reaching_unreachable.zig:5:14: error: reached unreachable code
    if (!ok) unreachable; // assertion failure
             ^~~~~~~~~~~
docgen_tmp/test_comptime_reaching_unreachable.zig:2:11: note: called from here
    assert(false);
    ~~~~~~^~~~~~~

At runtime:

runtime_reaching_unreachable.zig
const std = @import("std");

pub fn main() void {
    std.debug.assert(false);
}
Shell
$ zig build-exe runtime_reaching_unreachable.zig
$ ./runtime_reaching_unreachable
thread 144291 panic: reached unreachable code
/home/andy/src/zig-0.12.x/lib/std/debug.zig:403:14: 0x103595d in assert (runtime_reaching_unreachable)
    if (!ok) unreachable; // assertion failure
             ^
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_reaching_unreachable.zig:4:21: 0x1033d1a in main (runtime_reaching_unreachable)
    std.debug.assert(false);
                    ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x10335c9 in posixCallMainAndExit (runtime_reaching_unreachable)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1033131 in _start (runtime_reaching_unreachable)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Index out of Bounds §

At compile-time:

test_comptime_index_out_of_bounds.zig
comptime {
    const array: [5]u8 = "hello".*;
    const garbage = array[5];
    _ = garbage;
}
Shell
$ zig test test_comptime_index_out_of_bounds.zig
docgen_tmp/test_comptime_index_out_of_bounds.zig:3:27: error: index 5 outside array of length 5
    const garbage = array[5];
                          ^

At runtime:

runtime_index_out_of_bounds.zig
pub fn main() void {
    const x = foo("hello");
    _ = x;
}

fn foo(x: []const u8) u8 {
    return x[5];
}
Shell
$ zig build-exe runtime_index_out_of_bounds.zig
$ ./runtime_index_out_of_bounds
thread 144387 panic: index out of bounds: index 5, len 5
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_index_out_of_bounds.zig:7:13: 0x1035dd9 in foo (runtime_index_out_of_bounds)
    return x[5];
            ^
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_index_out_of_bounds.zig:2:18: 0x1033d46 in main (runtime_index_out_of_bounds)
    const x = foo("hello");
                 ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x10335e9 in posixCallMainAndExit (runtime_index_out_of_bounds)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1033151 in _start (runtime_index_out_of_bounds)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Cast Negative Number to Unsigned Integer §

At compile-time:

test_comptime_invalid_cast.zig
comptime {
    const value: i32 = -1;
    const unsigned: u32 = @intCast(value);
    _ = unsigned;
}
Shell
$ zig test test_comptime_invalid_cast.zig
docgen_tmp/test_comptime_invalid_cast.zig:3:36: error: type 'u32' cannot represent integer value '-1'
    const unsigned: u32 = @intCast(value);
                                   ^~~~~

At runtime:

runtime_invalid_cast.zig
const std = @import("std");

pub fn main() void {
    var value: i32 = -1; // runtime-known
    _ = &value;
    const unsigned: u32 = @intCast(value);
    std.debug.print("value: {}\n", .{unsigned});
}
Shell
$ zig build-exe runtime_invalid_cast.zig
$ ./runtime_invalid_cast
thread 144480 panic: attempt to cast negative value to unsigned integer
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_invalid_cast.zig:6:27: 0x1033e82 in main (runtime_invalid_cast)
    const unsigned: u32 = @intCast(value);
                          ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x10336e9 in posixCallMainAndExit (runtime_invalid_cast)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1033251 in _start (runtime_invalid_cast)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

To obtain the maximum value of an unsigned integer, use std.math.maxInt.

Cast Truncates Data §

At compile-time:

test_comptime_invalid_cast_truncate.zig
comptime {
    const spartan_count: u16 = 300;
    const byte: u8 = @intCast(spartan_count);
    _ = byte;
}
Shell
$ zig test test_comptime_invalid_cast_truncate.zig
docgen_tmp/test_comptime_invalid_cast_truncate.zig:3:31: error: type 'u8' cannot represent integer value '300'
    const byte: u8 = @intCast(spartan_count);
                              ^~~~~~~~~~~~~

At runtime:

runtime_invalid_cast_truncate.zig
const std = @import("std");

pub fn main() void {
    var spartan_count: u16 = 300; // runtime-known
    _ = &spartan_count;
    const byte: u8 = @intCast(spartan_count);
    std.debug.print("value: {}\n", .{byte});
}
Shell
$ zig build-exe runtime_invalid_cast_truncate.zig
$ ./runtime_invalid_cast_truncate
thread 144573 panic: integer cast truncated bits
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_invalid_cast_truncate.zig:6:22: 0x1033f1c in main (runtime_invalid_cast_truncate)
    const byte: u8 = @intCast(spartan_count);
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x1033779 in posixCallMainAndExit (runtime_invalid_cast_truncate)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x10332e1 in _start (runtime_invalid_cast_truncate)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

To truncate bits, use @truncate.

Integer Overflow §

Default Operations §

The following operators can cause integer overflow:

  • + (addition)
  • - (subtraction)
  • - (negation)
  • * (multiplication)
  • / (division)
  • @divTrunc (division)
  • @divFloor (division)
  • @divExact (division)

Example with addition at compile-time:

test_comptime_overflow.zig
comptime {
    var byte: u8 = 255;
    byte += 1;
}
Shell
$ zig test test_comptime_overflow.zig
docgen_tmp/test_comptime_overflow.zig:3:10: error: overflow of integer type 'u8' with value '256'
    byte += 1;
    ~~~~~^~~~

At runtime:

runtime_overflow.zig
const std = @import("std");

pub fn main() void {
    var byte: u8 = 255;
    byte += 1;
    std.debug.print("value: {}\n", .{byte});
}
Shell
$ zig build-exe runtime_overflow.zig
$ ./runtime_overflow
thread 144666 panic: integer overflow
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_overflow.zig:5:10: 0x1033efe in main (runtime_overflow)
    byte += 1;
         ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x1033779 in posixCallMainAndExit (runtime_overflow)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x10332e1 in _start (runtime_overflow)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Standard Library Math Functions §

These functions provided by the standard library return possible errors.

  • @import("std").math.add
  • @import("std").math.sub
  • @import("std").math.mul
  • @import("std").math.divTrunc
  • @import("std").math.divFloor
  • @import("std").math.divExact
  • @import("std").math.shl

Example of catching an overflow for addition:

math_add.zig
const math = @import("std").math;
const print = @import("std").debug.print;
pub fn main() !void {
    var byte: u8 = 255;

    byte = if (math.add(u8, byte, 1)) |result| result else |err| {
        print("unable to add one: {s}\n", .{@errorName(err)});
        return err;
    };

    print("result: {}\n", .{byte});
}
Shell
$ zig build-exe math_add.zig
$ ./math_add
unable to add one: Overflow
error: Overflow
/home/andy/src/zig-0.12.x/lib/std/math.zig:620:21: 0x1033f25 in add__anon_2651 (math_add)
    if (ov[1] != 0) return error.Overflow;
                    ^
/home/andy/src/zig-0.12.x/docgen_tmp/math_add.zig:8:9: 0x1033ec3 in main (math_add)
        return err;
        ^

Builtin Overflow Functions §

These builtins return a tuple containing whether there was an overflow (as a u1) and the possibly overflowed bits of the operation:

Example of @addWithOverflow:

addWithOverflow_builtin.zig
const print = @import("std").debug.print;
pub fn main() void {
    const byte: u8 = 255;

    const ov = @addWithOverflow(byte, 10);
    if (ov[1] != 0) {
        print("overflowed result: {}\n", .{ov[0]});
    } else {
        print("result: {}\n", .{ov[0]});
    }
}
Shell
$ zig build-exe addWithOverflow_builtin.zig
$ ./addWithOverflow_builtin
overflowed result: 9

Wrapping Operations §

These operations have guaranteed wraparound semantics.

  • +% (wraparound addition)
  • -% (wraparound subtraction)
  • -% (wraparound negation)
  • *% (wraparound multiplication)
test_wraparound_semantics.zig
const std = @import("std");
const expect = std.testing.expect;
const minInt = std.math.minInt;
const maxInt = std.math.maxInt;

test "wraparound addition and subtraction" {
    const x: i32 = maxInt(i32);
    const min_val = x +% 1;
    try expect(min_val == minInt(i32));
    const max_val = min_val -% 1;
    try expect(max_val == maxInt(i32));
}
Shell
$ zig test test_wraparound_semantics.zig
1/1 test_wraparound_semantics.test.wraparound addition and subtraction... OK
All 1 tests passed.

Exact Left Shift Overflow §

At compile-time:

test_comptime_shlExact_overwlow.zig
comptime {
    const x = @shlExact(@as(u8, 0b01010101), 2);
    _ = x;
}
Shell
$ zig test test_comptime_shlExact_overwlow.zig
docgen_tmp/test_comptime_shlExact_overwlow.zig:2:15: error: operation caused overflow
    const x = @shlExact(@as(u8, 0b01010101), 2);
              ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

At runtime:

runtime_shlExact_overflow.zig
const std = @import("std");

pub fn main() void {
    var x: u8 = 0b01010101; // runtime-known
    _ = &x;
    const y = @shlExact(x, 2);
    std.debug.print("value: {}\n", .{y});
}
Shell
$ zig build-exe runtime_shlExact_overflow.zig
$ ./runtime_shlExact_overflow
thread 144912 panic: left shift overflowed bits
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_shlExact_overflow.zig:6:5: 0x1033f1d in main (runtime_shlExact_overflow)
    const y = @shlExact(x, 2);
    ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x1033779 in posixCallMainAndExit (runtime_shlExact_overflow)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x10332e1 in _start (runtime_shlExact_overflow)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Exact Right Shift Overflow §

At compile-time:

test_comptime_shrExact_overflow.zig
comptime {
    const x = @shrExact(@as(u8, 0b10101010), 2);
    _ = x;
}
Shell
$ zig test test_comptime_shrExact_overflow.zig
docgen_tmp/test_comptime_shrExact_overflow.zig:2:15: error: exact shift shifted out 1 bits
    const x = @shrExact(@as(u8, 0b10101010), 2);
              ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

At runtime:

runtime_shrExact_overflow.zig
const std = @import("std");

pub fn main() void {
    var x: u8 = 0b10101010; // runtime-known
    _ = &x;
    const y = @shrExact(x, 2);
    std.debug.print("value: {}\n", .{y});
}
Shell
$ zig build-exe runtime_shrExact_overflow.zig
$ ./runtime_shrExact_overflow
thread 145005 panic: right shift overflowed bits
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_shrExact_overflow.zig:6:5: 0x1033f19 in main (runtime_shrExact_overflow)
    const y = @shrExact(x, 2);
    ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x1033779 in posixCallMainAndExit (runtime_shrExact_overflow)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x10332e1 in _start (runtime_shrExact_overflow)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Division by Zero §

At compile-time:

test_comptime_division_by_zero.zig
comptime {
    const a: i32 = 1;
    const b: i32 = 0;
    const c = a / b;
    _ = c;
}
Shell
$ zig test test_comptime_division_by_zero.zig
docgen_tmp/test_comptime_division_by_zero.zig:4:19: error: division by zero here causes undefined behavior
    const c = a / b;
                  ^

At runtime:

runtime_division_by_zero.zig
const std = @import("std");

pub fn main() void {
    var a: u32 = 1;
    var b: u32 = 0;
    _ = .{ &a, &b };
    const c = a / b;
    std.debug.print("value: {}\n", .{c});
}
Shell
$ zig build-exe runtime_division_by_zero.zig
$ ./runtime_division_by_zero
thread 145099 panic: division by zero
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_division_by_zero.zig:7:17: 0x1033e96 in main (runtime_division_by_zero)
    const c = a / b;
                ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x10336e9 in posixCallMainAndExit (runtime_division_by_zero)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1033251 in _start (runtime_division_by_zero)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Remainder Division by Zero §

At compile-time:

test_comptime_remainder_division_by_zero.zig
comptime {
    const a: i32 = 10;
    const b: i32 = 0;
    const c = a % b;
    _ = c;
}
Shell
$ zig test test_comptime_remainder_division_by_zero.zig
docgen_tmp/test_comptime_remainder_division_by_zero.zig:4:19: error: division by zero here causes undefined behavior
    const c = a % b;
                  ^

At runtime:

runtime_remainder_division_by_zero.zig
const std = @import("std");

pub fn main() void {
    var a: u32 = 10;
    var b: u32 = 0;
    _ = .{ &a, &b };
    const c = a % b;
    std.debug.print("value: {}\n", .{c});
}
Shell
$ zig build-exe runtime_remainder_division_by_zero.zig
$ ./runtime_remainder_division_by_zero
thread 145193 panic: division by zero
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_remainder_division_by_zero.zig:7:17: 0x1033e96 in main (runtime_remainder_division_by_zero)
    const c = a % b;
                ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x10336e9 in posixCallMainAndExit (runtime_remainder_division_by_zero)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1033251 in _start (runtime_remainder_division_by_zero)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Exact Division Remainder §

At compile-time:

test_comptime_divExact_remainder.zig
comptime {
    const a: u32 = 10;
    const b: u32 = 3;
    const c = @divExact(a, b);
    _ = c;
}
Shell
$ zig test test_comptime_divExact_remainder.zig
docgen_tmp/test_comptime_divExact_remainder.zig:4:15: error: exact division produced remainder
    const c = @divExact(a, b);
              ^~~~~~~~~~~~~~~

At runtime:

runtime_divExact_remainder.zig
const std = @import("std");

pub fn main() void {
    var a: u32 = 10;
    var b: u32 = 3;
    _ = .{ &a, &b };
    const c = @divExact(a, b);
    std.debug.print("value: {}\n", .{c});
}
Shell
$ zig build-exe runtime_divExact_remainder.zig
$ ./runtime_divExact_remainder
thread 145286 panic: exact division produced remainder
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_divExact_remainder.zig:7:15: 0x1033ecb in main (runtime_divExact_remainder)
    const c = @divExact(a, b);
              ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x10336e9 in posixCallMainAndExit (runtime_divExact_remainder)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1033251 in _start (runtime_divExact_remainder)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Attempt to Unwrap Null §

At compile-time:

test_comptime_unwrap_null.zig
comptime {
    const optional_number: ?i32 = null;
    const number = optional_number.?;
    _ = number;
}
Shell
$ zig test test_comptime_unwrap_null.zig
docgen_tmp/test_comptime_unwrap_null.zig:3:35: error: unable to unwrap null
    const number = optional_number.?;
                   ~~~~~~~~~~~~~~~^~

At runtime:

runtime_unwrap_null.zig
const std = @import("std");

pub fn main() void {
    var optional_number: ?i32 = null;
    _ = &optional_number;
    const number = optional_number.?;
    std.debug.print("value: {}\n", .{number});
}
Shell
$ zig build-exe runtime_unwrap_null.zig
$ ./runtime_unwrap_null
thread 145379 panic: attempt to use null value
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_unwrap_null.zig:6:35: 0x1033f12 in main (runtime_unwrap_null)
    const number = optional_number.?;
                                  ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x1033779 in posixCallMainAndExit (runtime_unwrap_null)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x10332e1 in _start (runtime_unwrap_null)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

One way to avoid this crash is to test for null instead of assuming non-null, with the if expression:

testing_null_with_if.zig
const print = @import("std").debug.print;
pub fn main() void {
    const optional_number: ?i32 = null;

    if (optional_number) |number| {
        print("got number: {}\n", .{number});
    } else {
        print("it's null\n", .{});
    }
}
Shell
$ zig build-exe testing_null_with_if.zig
$ ./testing_null_with_if
it's null

See also:

Attempt to Unwrap Error §

At compile-time:

test_comptime_unwrap_error.zig
comptime {
    const number = getNumberOrFail() catch unreachable;
    _ = number;
}

fn getNumberOrFail() !i32 {
    return error.UnableToReturnNumber;
}
Shell
$ zig test test_comptime_unwrap_error.zig
docgen_tmp/test_comptime_unwrap_error.zig:2:44: error: caught unexpected error 'UnableToReturnNumber'
    const number = getNumberOrFail() catch unreachable;
                                           ^~~~~~~~~~~
docgen_tmp/test_comptime_unwrap_error.zig:7:18: note: error returned here
    return error.UnableToReturnNumber;
                 ^~~~~~~~~~~~~~~~~~~~

At runtime:

runtime_unwrap_error.zig
const std = @import("std");

pub fn main() void {
    const number = getNumberOrFail() catch unreachable;
    std.debug.print("value: {}\n", .{number});
}

fn getNumberOrFail() !i32 {
    return error.UnableToReturnNumber;
}
Shell
$ zig build-exe runtime_unwrap_error.zig
$ ./runtime_unwrap_error
thread 145523 panic: attempt to unwrap error: UnableToReturnNumber
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_unwrap_error.zig:9:5: 0x1035fbf in getNumberOrFail (runtime_unwrap_error)
    return error.UnableToReturnNumber;
    ^
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_unwrap_error.zig:4:44: 0x1033f51 in main (runtime_unwrap_error)
    const number = getNumberOrFail() catch unreachable;
                                           ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x1033799 in posixCallMainAndExit (runtime_unwrap_error)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1033301 in _start (runtime_unwrap_error)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

One way to avoid this crash is to test for an error instead of assuming a successful result, with the if expression:

testing_error_with_if.zig
const print = @import("std").debug.print;

pub fn main() void {
    const result = getNumberOrFail();

    if (result) |number| {
        print("got number: {}\n", .{number});
    } else |err| {
        print("got error: {s}\n", .{@errorName(err)});
    }
}

fn getNumberOrFail() !i32 {
    return error.UnableToReturnNumber;
}
Shell
$ zig build-exe testing_error_with_if.zig
$ ./testing_error_with_if
got error: UnableToReturnNumber

See also:

Invalid Error Code §

At compile-time:

test_comptime_invalid_error_code.zig
comptime {
    const err = error.AnError;
    const number = @intFromError(err) + 10;
    const invalid_err = @errorFromInt(number);
    _ = invalid_err;
}
Shell
$ zig test test_comptime_invalid_error_code.zig
docgen_tmp/test_comptime_invalid_error_code.zig:4:39: error: integer value '11' represents no error
    const invalid_err = @errorFromInt(number);
                                      ^~~~~~

At runtime:

runtime_invalid_error_code.zig
const std = @import("std");

pub fn main() void {
    const err = error.AnError;
    var number = @intFromError(err) + 500;
    _ = &number;
    const invalid_err = @errorFromInt(number);
    std.debug.print("value: {}\n", .{invalid_err});
}
Shell
$ zig build-exe runtime_invalid_error_code.zig
$ ./runtime_invalid_error_code
thread 145667 panic: invalid error code
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_invalid_error_code.zig:7:5: 0x1033f00 in main (runtime_invalid_error_code)
    const invalid_err = @errorFromInt(number);
    ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x1033749 in posixCallMainAndExit (runtime_invalid_error_code)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x10332b1 in _start (runtime_invalid_error_code)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Invalid Enum Cast §

At compile-time:

test_comptime_invalid_enum_cast.zig
const Foo = enum {
    a,
    b,
    c,
};
comptime {
    const a: u2 = 3;
    const b: Foo = @enumFromInt(a);
    _ = b;
}
Shell
$ zig test test_comptime_invalid_enum_cast.zig
docgen_tmp/test_comptime_invalid_enum_cast.zig:8:20: error: enum 'test_comptime_invalid_enum_cast.Foo' has no tag with value '3'
    const b: Foo = @enumFromInt(a);
                   ^~~~~~~~~~~~~~~
docgen_tmp/test_comptime_invalid_enum_cast.zig:1:13: note: enum declared here
const Foo = enum {
            ^~~~

At runtime:

runtime_invalid_enum_cast.zig
const std = @import("std");

const Foo = enum {
    a,
    b,
    c,
};

pub fn main() void {
    var a: u2 = 3;
    _ = &a;
    const b: Foo = @enumFromInt(a);
    std.debug.print("value: {s}\n", .{@tagName(b)});
}
Shell
$ zig build-exe runtime_invalid_enum_cast.zig
$ ./runtime_invalid_enum_cast
thread 145761 panic: invalid enum value
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_invalid_enum_cast.zig:12:20: 0x1033ef7 in main (runtime_invalid_enum_cast)
    const b: Foo = @enumFromInt(a);
                   ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x1033759 in posixCallMainAndExit (runtime_invalid_enum_cast)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x10332c1 in _start (runtime_invalid_enum_cast)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Invalid Error Set Cast §

At compile-time:

test_comptime_invalid_error_set_cast.zig
const Set1 = error{
    A,
    B,
};
const Set2 = error{
    A,
    C,
};
comptime {
    _ = @as(Set2, @errorCast(Set1.B));
}
Shell
$ zig test test_comptime_invalid_error_set_cast.zig
docgen_tmp/test_comptime_invalid_error_set_cast.zig:10:19: error: 'error.B' not a member of error set 'error{A,C}'
    _ = @as(Set2, @errorCast(Set1.B));
                  ^~~~~~~~~~~~~~~~~~

At runtime:

runtime_invalid_error_set_cast.zig
const std = @import("std");

const Set1 = error{
    A,
    B,
};
const Set2 = error{
    A,
    C,
};
pub fn main() void {
    foo(Set1.B);
}
fn foo(set1: Set1) void {
    const x: Set2 = @errorCast(set1);
    std.debug.print("value: {}\n", .{x});
}
Shell
$ zig build-exe runtime_invalid_error_set_cast.zig
$ ./runtime_invalid_error_set_cast
thread 145854 panic: invalid error code
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_invalid_error_set_cast.zig:15:21: 0x1035f97 in foo (runtime_invalid_error_set_cast)
    const x: Set2 = @errorCast(set1);
                    ^
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_invalid_error_set_cast.zig:12:8: 0x1033edd in main (runtime_invalid_error_set_cast)
    foo(Set1.B);
       ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x1033789 in posixCallMainAndExit (runtime_invalid_error_set_cast)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x10332f1 in _start (runtime_invalid_error_set_cast)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Incorrect Pointer Alignment §

At compile-time:

test_comptime_incorrect_pointer_alignment.zig
comptime {
    const ptr: *align(1) i32 = @ptrFromInt(0x1);
    const aligned: *align(4) i32 = @alignCast(ptr);
    _ = aligned;
}
Shell
$ zig test test_comptime_incorrect_pointer_alignment.zig
docgen_tmp/test_comptime_incorrect_pointer_alignment.zig:3:47: error: pointer address 0x1 is not aligned to 4 bytes
    const aligned: *align(4) i32 = @alignCast(ptr);
                                              ^~~

At runtime:

runtime_incorrect_pointer_alignment.zig
const mem = @import("std").mem;
pub fn main() !void {
    var array align(4) = [_]u32{ 0x11111111, 0x11111111 };
    const bytes = mem.sliceAsBytes(array[0..]);
    if (foo(bytes) != 0x11111111) return error.Wrong;
}
fn foo(bytes: []u8) u32 {
    const slice4 = bytes[1..5];
    const int_slice = mem.bytesAsSlice(u32, @as([]align(4) u8, @alignCast(slice4)));
    return int_slice[0];
}
Shell
$ zig build-exe runtime_incorrect_pointer_alignment.zig
$ ./runtime_incorrect_pointer_alignment
thread 145948 panic: incorrect alignment
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_incorrect_pointer_alignment.zig:9:64: 0x1033b8a in foo (runtime_incorrect_pointer_alignment)
    const int_slice = mem.bytesAsSlice(u32, @as([]align(4) u8, @alignCast(slice4)));
                                                               ^
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_incorrect_pointer_alignment.zig:5:12: 0x1033a47 in main (runtime_incorrect_pointer_alignment)
    if (foo(bytes) != 0x11111111) return error.Wrong;
           ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:511:37: 0x1033945 in posixCallMainAndExit (runtime_incorrect_pointer_alignment)
            const result = root.main() catch |err| {
                                    ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1033461 in _start (runtime_incorrect_pointer_alignment)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Wrong Union Field Access §

At compile-time:

test_comptime_wrong_union_field_access.zig
comptime {
    var f = Foo{ .int = 42 };
    f.float = 12.34;
}

const Foo = union {
    float: f32,
    int: u32,
};
Shell
$ zig test test_comptime_wrong_union_field_access.zig
docgen_tmp/test_comptime_wrong_union_field_access.zig:3:6: error: access of union field 'float' while field 'int' is active
    f.float = 12.34;
    ~^~~~~~
docgen_tmp/test_comptime_wrong_union_field_access.zig:6:13: note: union declared here
const Foo = union {
            ^~~~~

At runtime:

runtime_wrong_union_field_access.zig
const std = @import("std");

const Foo = union {
    float: f32,
    int: u32,
};

pub fn main() void {
    var f = Foo{ .int = 42 };
    bar(&f);
}

fn bar(f: *Foo) void {
    f.float = 12.34;
    std.debug.print("value: {}\n", .{f.float});
}
Shell
$ zig build-exe runtime_wrong_union_field_access.zig
$ ./runtime_wrong_union_field_access
thread 146042 panic: access of union field 'float' while field 'int' is active
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_wrong_union_field_access.zig:14:6: 0x103b960 in bar (runtime_wrong_union_field_access)
    f.float = 12.34;
     ^
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_wrong_union_field_access.zig:10:8: 0x10398bc in main (runtime_wrong_union_field_access)
    bar(&f);
       ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x1039159 in posixCallMainAndExit (runtime_wrong_union_field_access)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1038cc1 in _start (runtime_wrong_union_field_access)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

This safety is not available for extern or packed unions.

To change the active field of a union, assign the entire union, like this:

change_active_union_field.zig
const std = @import("std");

const Foo = union {
    float: f32,
    int: u32,
};

pub fn main() void {
    var f = Foo{ .int = 42 };
    bar(&f);
}

fn bar(f: *Foo) void {
    f.* = Foo{ .float = 12.34 };
    std.debug.print("value: {}\n", .{f.float});
}
Shell
$ zig build-exe change_active_union_field.zig
$ ./change_active_union_field
value: 1.234e1

To change the active field of a union when a meaningful value for the field is not known, use undefined, like this:

undefined_active_union_field.zig
const std = @import("std");

const Foo = union {
    float: f32,
    int: u32,
};

pub fn main() void {
    var f = Foo{ .int = 42 };
    f = Foo{ .float = undefined };
    bar(&f);
    std.debug.print("value: {}\n", .{f.float});
}

fn bar(f: *Foo) void {
    f.float = 12.34;
}
Shell
$ zig build-exe undefined_active_union_field.zig
$ ./undefined_active_union_field
value: 1.234e1

See also:

Out of Bounds Float to Integer Cast §

This happens when casting a float to an integer where the float has a value outside the integer type's range.

At compile-time:

test_comptime_out_of_bounds_float_to_integer_cast.zig
comptime {
    const float: f32 = 4294967296;
    const int: i32 = @intFromFloat(float);
    _ = int;
}
Shell
$ zig test test_comptime_out_of_bounds_float_to_integer_cast.zig
docgen_tmp/test_comptime_out_of_bounds_float_to_integer_cast.zig:3:36: error: float value '4294967296' cannot be stored in integer type 'i32'
    const int: i32 = @intFromFloat(float);
                                   ^~~~~

At runtime:

runtime_out_of_bounds_float_to_integer_cast.zig
pub fn main() void {
    var float: f32 = 4294967296; // runtime-known
    _ = &float;
    const int: i32 = @intFromFloat(float);
    _ = int;
}
Shell
$ zig build-exe runtime_out_of_bounds_float_to_integer_cast.zig
$ ./runtime_out_of_bounds_float_to_integer_cast
thread 146237 panic: integer part of floating point value out of bounds
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_out_of_bounds_float_to_integer_cast.zig:4:22: 0x1033d89 in main (runtime_out_of_bounds_float_to_integer_cast)
    const int: i32 = @intFromFloat(float);
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x10335c9 in posixCallMainAndExit (runtime_out_of_bounds_float_to_integer_cast)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1033131 in _start (runtime_out_of_bounds_float_to_integer_cast)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Pointer Cast Invalid Null §

This happens when casting a pointer with the address 0 to a pointer which may not have the address 0. For example, C Pointers, Optional Pointers, and allowzero pointers allow address zero, but normal Pointers do not.

At compile-time:

test_comptime_invalid_null_pointer_cast.zig
comptime {
    const opt_ptr: ?*i32 = null;
    const ptr: *i32 = @ptrCast(opt_ptr);
    _ = ptr;
}
Shell
$ zig test test_comptime_invalid_null_pointer_cast.zig
docgen_tmp/test_comptime_invalid_null_pointer_cast.zig:3:32: error: null pointer casted to type '*i32'
    const ptr: *i32 = @ptrCast(opt_ptr);
                               ^~~~~~~

At runtime:

runtime_invalid_null_pointer_cast.zig
pub fn main() void {
    var opt_ptr: ?*i32 = null;
    _ = &opt_ptr;
    const ptr: *i32 = @ptrCast(opt_ptr);
    _ = ptr;
}
Shell
$ zig build-exe runtime_invalid_null_pointer_cast.zig
$ ./runtime_invalid_null_pointer_cast
thread 146331 panic: cast causes pointer to be null
/home/andy/src/zig-0.12.x/docgen_tmp/runtime_invalid_null_pointer_cast.zig:4:23: 0x1033d5c in main (runtime_invalid_null_pointer_cast)
    const ptr: *i32 = @ptrCast(opt_ptr);
                      ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:501:22: 0x10335c9 in posixCallMainAndExit (runtime_invalid_null_pointer_cast)
            root.main();
                     ^
/home/andy/src/zig-0.12.x/lib/std/start.zig:253:5: 0x1033131 in _start (runtime_invalid_null_pointer_cast)
    asm volatile (switch (native_arch) {
    ^
???:?:?: 0x0 in ??? (???)
(process terminated by signal)

Memory §

The Zig language performs no memory management on behalf of the programmer. This is why Zig has no runtime, and why Zig code works seamlessly in so many environments, including real-time software, operating system kernels, embedded devices, and low latency servers. As a consequence, Zig programmers must always be able to answer the question:

Where are the bytes?

Like Zig, the C programming language has manual memory management. However, unlike Zig, C has a default allocator - malloc, realloc, and free. When linking against libc, Zig exposes this allocator with std.heap.c_allocator. However, by convention, there is no default allocator in Zig. Instead, functions which need to allocate accept an Allocator parameter. Likewise, data structures such as std.ArrayList accept an Allocator parameter in their initialization functions:

test_allocator.zig
const std = @import("std");
const Allocator = std.mem.Allocator;
const expect = std.testing.expect;

test "using an allocator" {
    var buffer: [100]u8 = undefined;
    var fba = std.heap.FixedBufferAllocator.init(&buffer);
    const allocator = fba.allocator();
    const result = try concat(allocator, "foo", "bar");
    try expect(std.mem.eql(u8, "foobar", result));
}

fn concat(allocator: Allocator, a: []const u8, b: []const u8) ![]u8 {
    const result = try allocator.alloc(u8, a.len + b.len);
    @memcpy(result[0..a.len], a);
    @memcpy(result[a.len..], b);
    return result;
}
Shell
$ zig test test_allocator.zig
1/1 test_allocator.test.using an allocator... OK
All 1 tests passed.

In the above example, 100 bytes of stack memory are used to initialize a FixedBufferAllocator, which is then passed to a function. As a convenience there is a global FixedBufferAllocator available for quick tests at std.testing.allocator, which will also perform basic leak detection.

Zig has a general purpose allocator available to be imported with std.heap.GeneralPurposeAllocator. However, it is still recommended to follow the Choosing an Allocator guide.

Choosing an Allocator §

What allocator to use depends on a number of factors. Here is a flow chart to help you decide:

  1. Are you making a library? In this case, best to accept an Allocator as a parameter and allow your library's users to decide what allocator to use.
  2. Are you linking libc? In this case, std.heap.c_allocator is likely the right choice, at least for your main allocator.
  3. Is the maximum number of bytes that you will need bounded by a number known at comptime? In this case, use std.heap.FixedBufferAllocator or std.heap.ThreadSafeFixedBufferAllocator depending on whether you need thread-safety or not.
  4. Is your program a command line application which runs from start to end without any fundamental cyclical pattern (such as a video game main loop, or a web server request handler), such that it would make sense to free everything at once at the end? In this case, it is recommended to follow this pattern:
    cli_allocation.zig
    const std = @import("std");
    
    pub fn main() !void {
        var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);
        defer arena.deinit();
    
        const allocator = arena.allocator();
    
        const ptr = try allocator.create(i32);
        std.debug.print("ptr={*}\n", .{ptr});
    }
    Shell
    $ zig build-exe cli_allocation.zig
    $ ./cli_allocation
    ptr=i32@7fb79fc72010
    
    When using this kind of allocator, there is no need to free anything manually. Everything gets freed at once with the call to arena.deinit().
  5. Are the allocations part of a cyclical pattern such as a video game main loop, or a web server request handler? If the allocations can all be freed at once, at the end of the cycle, for example once the video game frame has been fully rendered, or the web server request has been served, then std.heap.ArenaAllocator is a great candidate. As demonstrated in the previous bullet point, this allows you to free entire arenas at once. Note also that if an upper bound of memory can be established, then std.heap.FixedBufferAllocator can be used as a further optimization.
  6. Are you writing a test, and you want to make sure error.OutOfMemory is handled correctly? In this case, use std.testing.FailingAllocator.
  7. Are you writing a test? In this case, use std.testing.allocator.
  8. Finally, if none of the above apply, you need a general purpose allocator. Zig's general purpose allocator is available as a function that takes a comptime struct of configuration options and returns a type. Generally, you will set up one std.heap.GeneralPurposeAllocator in your main function, and then pass it or sub-allocators around to various parts of your application.
  9. You can also consider Implementing an Allocator.

Where are the bytes? §

String literals such as "hello" are in the global constant data section. This is why it is an error to pass a string literal to a mutable slice, like this:

test_string_literal_to_slice.zig
fn foo(s: []u8) void {
    _ = s;
}

test "string literal to mutable slice" {
    foo("hello");
}
Shell
$ zig test test_string_literal_to_slice.zig
docgen_tmp/test_string_literal_to_slice.zig:6:9: error: expected type '[]u8', found '*const [5:0]u8'
    foo("hello");
        ^~~~~~~
docgen_tmp/test_string_literal_to_slice.zig:6:9: note: cast discards const qualifier
docgen_tmp/test_string_literal_to_slice.zig:1:11: note: parameter type declared here
fn foo(s: []u8) void {
          ^~~~

However if you make the slice constant, then it works:

test_string_literal_to_const_slice.zig
fn foo(s: []const u8) void {
    _ = s;
}

test "string literal to constant slice" {
    foo("hello");
}
Shell
$ zig test test_string_literal_to_const_slice.zig
1/1 test_string_literal_to_const_slice.test.string literal to constant slice... OK
All 1 tests passed.

Just like string literals, const declarations, when the value is known at comptime, are stored in the global constant data section. Also Compile Time Variables are stored in the global constant data section.

var declarations inside functions are stored in the function's stack frame. Once a function returns, any Pointers to variables in the function's stack frame become invalid references, and dereferencing them becomes unchecked Undefined Behavior.

var declarations at the top level or in struct declarations are stored in the global data section.

The location of memory allocated with allocator.alloc or allocator.create is determined by the allocator's implementation.

TODO: thread local variables

Implementing an Allocator §

Zig programmers can implement their own allocators by fulfilling the Allocator interface. In order to do this one must read carefully the documentation comments in std/mem.zig and then supply a allocFn and a resizeFn.

There are many example allocators to look at for inspiration. Look at std/heap.zig and std.heap.GeneralPurposeAllocator.

Heap Allocation Failure §

Many programming languages choose to handle the possibility of heap allocation failure by unconditionally crashing. By convention, Zig programmers do not consider this to be a satisfactory solution. Instead, error.OutOfMemory represents heap allocation failure, and Zig libraries return this error code whenever heap allocation failure prevented an operation from completing successfully.

Some have argued that because some operating systems such as Linux have memory overcommit enabled by default, it is pointless to handle heap allocation failure. There are many problems with this reasoning:

  • Only some operating systems have an overcommit feature.
    • Linux has it enabled by default, but it is configurable.
    • Windows does not overcommit.
    • Embedded systems do not have overcommit.
    • Hobby operating systems may or may not have overcommit.
  • For real-time systems, not only is there no overcommit, but typically the maximum amount of memory per application is determined ahead of time.
  • When writing a library, one of the main goals is code reuse. By making code handle allocation failure correctly, a library becomes eligible to be reused in more contexts.
  • Although some software has grown to depend on overcommit being enabled, its existence is the source of countless user experience disasters. When a system with overcommit enabled, such as Linux on default settings, comes close to memory exhaustion, the system locks up and becomes unusable. At this point, the OOM Killer selects an application to kill based on heuristics. This non-deterministic decision often results in an important process being killed, and often fails to return the system back to working order.

Recursion §

Recursion is a fundamental tool in modeling software. However it has an often-overlooked problem: unbounded memory allocation.

Recursion is an area of active experimentation in Zig and so the documentation here is not final. You can read a summary of recursion status in the 0.3.0 release notes.

The short summary is that currently recursion works normally as you would expect. Although Zig code is not yet protected from stack overflow, it is planned that a future version of Zig will provide such protection, with some degree of cooperation from Zig code required.

Lifetime and Ownership §

It is the Zig programmer's responsibility to ensure that a pointer is not accessed when the memory pointed to is no longer available. Note that a slice is a form of pointer, in that it references other memory.

In order to prevent bugs, there are some helpful conventions to follow when dealing with pointers. In general, when a function returns a pointer, the documentation for the function should explain who "owns" the pointer. This concept helps the programmer decide when it is appropriate, if ever, to free the pointer.

For example, the function's documentation may say "caller owns the returned memory", in which case the code that calls the function must have a plan for when to free that memory. Probably in this situation, the function will accept an Allocator parameter.

Sometimes the lifetime of a pointer may be more complicated. For example, the std.ArrayList(T).items slice has a lifetime that remains valid until the next time the list is resized, such as by appending new elements.

The API documentation for functions and data structures should take great care to explain the ownership and lifetime semantics of pointers. Ownership determines whose responsibility it is to free the memory referenced by the pointer, and lifetime determines the point at which the memory becomes inaccessible (lest Undefined Behavior occur).

Compile Variables §

Compile variables are accessible by importing the "builtin" package, which the compiler makes available to every Zig source file. It contains compile-time constants such as the current target, endianness, and release mode.

compile_variables.zig
const builtin = @import("builtin");
const separator = if (builtin.os.tag == .windows) '\\' else '/';

Example of what is imported with @import("builtin"):

@import("builtin")
const std = @import("std");
/// Zig version. When writing code that supports multiple versions of Zig, prefer
/// feature detection (i.e. with `@hasDecl` or `@hasField`) over version checks.
pub const zig_version = std.SemanticVersion.parse(zig_version_string) catch unreachable;
pub const zig_version_string = "0.12.1";
pub const zig_backend = std.builtin.CompilerBackend.stage2_llvm;

pub const output_mode = std.builtin.OutputMode.Obj;
pub const link_mode = std.builtin.LinkMode.static;
pub const is_test = false;
pub const single_threaded = false;
pub const abi = std.Target.Abi.gnu;
pub const cpu: std.Target.Cpu = .{
    .arch = .x86_64,
    .model = &std.Target.x86.cpu.znver3,
    .features = std.Target.x86.featureSet(&[_]std.Target.x86.Feature{
        .@"64bit",
        .adx,
        .aes,
        .allow_light_256_bit,
        .avx,
        .avx2,
        .avx512bf16,
        .avx512bitalg,
        .avx512bw,
        .avx512cd,
        .avx512dq,
        .avx512f,
        .avx512ifma,
        .avx512vbmi,
        .avx512vbmi2,
        .avx512vl,
        .avx512vnni,
        .avx512vpopcntdq,
        .bmi,
        .bmi2,
        .branchfusion,
        .clflushopt,
        .clwb,
        .clzero,
        .cmov,
        .crc32,
        .cx16,
        .cx8,
        .f16c,
        .fast_15bytenop,
        .fast_bextr,
        .fast_lzcnt,
        .fast_movbe,
        .fast_scalar_fsqrt,
        .fast_scalar_shift_masks,
        .fast_variable_perlane_shuffle,
        .fast_vector_fsqrt,
        .fma,
        .fsgsbase,
        .fsrm,
        .fxsr,
        .gfni,
        .invpcid,
        .lzcnt,
        .macrofusion,
        .mmx,
        .movbe,
        .mwaitx,
        .nopl,
        .pclmul,
        .pku,
        .popcnt,
        .prfchw,
        .rdpid,
        .rdpru,
        .rdrnd,
        .rdseed,
        .sahf,
        .sbb_dep_breaking,
        .sha,
        .shstk,
        .slow_shld,
        .sse,
        .sse2,
        .sse3,
        .sse4_1,
        .sse4_2,
        .sse4a,
        .ssse3,
        .vaes,
        .vpclmulqdq,
        .vzeroupper,
        .wbnoinvd,
        .x87,
        .xsave,
        .xsavec,
        .xsaveopt,
        .xsaves,
    }),
};
pub const os = std.Target.Os{
    .tag = .linux,
    .version_range = .{ .linux = .{
        .range = .{
            .min = .{
                .major = 6,
                .minor = 9,
                .patch = 2,
            },
            .max = .{
                .major = 6,
                .minor = 9,
                .patch = 2,
            },
        },
        .glibc = .{
            .major = 2,
            .minor = 39,
            .patch = 0,
        },
    }},
};
pub const target: std.Target = .{
    .cpu = cpu,
    .os = os,
    .abi = abi,
    .ofmt = object_format,
    .dynamic_linker = std.Target.DynamicLinker.init("/nix/store/k7zgvzp2r31zkg9xqgjim7mbknryv6bs-glibc-2.39-52/lib/ld-linux-x86-64.so.2"),
};
pub const object_format = std.Target.ObjectFormat.elf;
pub const mode = std.builtin.OptimizeMode.Debug;
pub const link_libc = false;
pub const link_libcpp = false;
pub const have_error_return_tracing = true;
pub const valgrind_support = true;
pub const sanitize_thread = false;
pub const position_independent_code = false;
pub const position_independent_executable = false;
pub const strip_debug_info = false;
pub const code_model = std.builtin.CodeModel.default;
pub const omit_frame_pointer = false;

See also:

Root Source File §

TODO: explain how root source file finds other files

TODO: pub fn main

TODO: pub fn panic

TODO: if linking with libc you can use export fn main

TODO: order independent top level declarations

TODO: lazy analysis

TODO: using comptime { _ = @import() }

Zig Build System §

The Zig Build System provides a cross-platform, dependency-free way to declare the logic required to build a project. With this system, the logic to build a project is written in a build.zig file, using the Zig Build System API to declare and configure build artifacts and other tasks.

Some examples of tasks the build system can help with:

  • Performing tasks in parallel and caching the results.
  • Depending on other projects.
  • Providing a package for other projects to depend on.
  • Creating build artifacts by executing the Zig compiler. This includes building Zig source code as well as C and C++ source code.
  • Capturing user-configured options and using those options to configure the build.
  • Surfacing build configuration as comptime values by providing a file that can be imported by Zig code.
  • Caching build artifacts to avoid unnecessarily repeating steps.
  • Executing build artifacts or system-installed tools.
  • Running tests and verifying the output of executing a build artifact matches the expected value.
  • Running zig fmt on a codebase or a subset of it.
  • Custom tasks.

To use the build system, run zig build --help to see a command-line usage help menu. This will include project-specific options that were declared in the build.zig script.

For the time being, the build system documentation is hosted externally: Build System Documentation

C §

Although Zig is independent of C, and, unlike most other languages, does not depend on libc, Zig acknowledges the importance of interacting with existing C code.

There are a few ways that Zig facilitates C interop.

C Type Primitives §

These have guaranteed C ABI compatibility and can be used like any other type.

  • c_char
  • c_short
  • c_ushort
  • c_int
  • c_uint
  • c_long
  • c_ulong
  • c_longlong
  • c_ulonglong
  • c_longdouble

To interop with the C void type, use anyopaque.

See also:

Import from C Header File §

The @cImport builtin function can be used to directly import symbols from .h files:

cImport_builtin.zig
const c = @cImport({
    // See https://github.com/ziglang/zig/issues/515
    @cDefine("_NO_CRT_STDIO_INLINE", "1");
    @cInclude("stdio.h");
});
pub fn main() void {
    _ = c.printf("hello\n");
}
Shell
$ zig build-exe cImport_builtin.zig -lc
$ ./cImport_builtin
hello

The @cImport function takes an expression as a parameter. This expression is evaluated at compile-time and is used to control preprocessor directives and include multiple .h files:

@cImport Expression
const builtin = @import("builtin");

const c = @cImport({
    @cDefine("NDEBUG", builtin.mode == .ReleaseFast);
    if (something) {
        @cDefine("_GNU_SOURCE", {});
    }
    @cInclude("stdlib.h");
    if (something) {
        @cUndef("_GNU_SOURCE");
    }
    @cInclude("soundio.h");
});

See also:

C Translation CLI §

Zig's C translation capability is available as a CLI tool via zig translate-c. It requires a single filename as an argument. It may also take a set of optional flags that are forwarded to clang. It writes the translated file to stdout.

Command line flags §

  • -I: Specify a search directory for include files. May be used multiple times. Equivalent to clang's -I flag. The current directory is not included by default; use -I. to include it.
  • -D: Define a preprocessor macro. Equivalent to clang's -D flag.
  • -cflags [flags] --: Pass arbitrary additional command line flags to clang. Note: the list of flags must end with --
  • -target: The target triple for the translated Zig code. If no target is specified, the current host target will be used.

Using -target and -cflags §

Important! When translating C code with zig translate-c, you must use the same -target triple that you will use when compiling the translated code. In addition, you must ensure that the -cflags used, if any, match the cflags used by code on the target system. Using the incorrect -target or -cflags could result in clang or Zig parse failures, or subtle ABI incompatibilities when linking with C code.

varytarget.h
long FOO = __LONG_MAX__;
Shell
$ zig translate-c -target thumb-freestanding-gnueabihf varytarget.h|grep FOO
pub export var FOO: c_long = 2147483647;
$ zig translate-c -target x86_64-macos-gnu varytarget.h|grep FOO
pub export var FOO: c_long = 9223372036854775807;
varycflags.h
enum FOO { BAR };
int do_something(enum FOO foo);
Shell
$ zig translate-c varycflags.h|grep -B1 do_something
pub const enum_FOO = c_uint;
pub extern fn do_something(foo: enum_FOO) c_int;
$ zig translate-c -cflags -fshort-enums -- varycflags.h|grep -B1 do_something
pub const enum_FOO = u8;
pub extern fn do_something(foo: enum_FOO) c_int;

@cImport vs translate-c §

@cImport and zig translate-c use the same underlying C translation functionality, so on a technical level they are equivalent. In practice, @cImport is useful as a way to quickly and easily access numeric constants, typedefs, and record types without needing any extra setup. If you need to pass cflags to clang, or if you would like to edit the translated code, it is recommended to use zig translate-c and save the results to a file. Common reasons for editing the generated code include: changing anytype parameters in function-like macros to more specific types; changing [*c]T pointers to [*]T or *T pointers for improved type safety; and enabling or disabling runtime safety within specific functions.

See also:

C Translation Caching §

The C translation feature (whether used via zig translate-c or @cImport) integrates with the Zig caching system. Subsequent runs with the same source file, target, and cflags will use the cache instead of repeatedly translating the same code.

To see where the cached files are stored when compiling code that uses @cImport, use the --verbose-cimport flag:

verbose_cimport_flag.zig
const c = @cImport({
    @cDefine("_NO_CRT_STDIO_INLINE", "1");
    @cInclude("stdio.h");
});
pub fn main() void {
    _ = c;
}
Shell
$ zig build-exe verbose_cimport_flag.zig -lc --verbose-cimport
info(compilation): C import source: /home/andy/src/zig-0.12.x/docgen_tmp/zig-cache/o/bac4b43fe93a323f3a29ec99e8a5c592/cimport.h
info(compilation): C import .d file: /home/andy/src/zig-0.12.x/docgen_tmp/zig-cache/o/bac4b43fe93a323f3a29ec99e8a5c592/cimport.h.d
info(compilation): C import output: /home/andy/src/zig-0.12.x/docgen_tmp/zig-cache/o/8d122f5e4ca85ea689ff47eafd12a497/cimport.zig
LLVM Emit Object... LLVM Emit Object... LLD Link... $ ./verbose_cimport_flag

cimport.h contains the file to translate (constructed from calls to @cInclude, @cDefine, and @cUndef), cimport.h.d is the list of file dependencies, and cimport.zig contains the translated output.

See also:

Translation failures §

Some C constructs cannot be translated to Zig - for example, goto, structs with bitfields, and token-pasting macros. Zig employs demotion to allow translation to continue in the face of non-translatable entities.

Demotion comes in three varieties - opaque, extern, and @compileError. C structs and unions that cannot be translated correctly will be translated as opaque{}. Functions that contain opaque types or code constructs that cannot be translated will be demoted to extern declarations. Thus, non-translatable types can still be used as pointers, and non-translatable functions can be called so long as the linker is aware of the compiled function.

@compileError is used when top-level definitions (global variables, function prototypes, macros) cannot be translated or demoted. Since Zig uses lazy analysis for top-level declarations, untranslatable entities will not cause a compile error in your code unless you actually use them.

See also:

C Macros §

C Translation makes a best-effort attempt to translate function-like macros into equivalent Zig functions. Since C macros operate at the level of lexical tokens, not all C macros can be translated to Zig. Macros that cannot be translated will be demoted to @compileError. Note that C code which uses macros will be translated without any additional issues (since Zig operates on the pre-processed source with macros expanded). It is merely the macros themselves which may not be translatable to Zig.

Consider the following example:

macro.c
#define MAKELOCAL(NAME, INIT) int NAME = INIT
int foo(void) {
   MAKELOCAL(a, 1);
   MAKELOCAL(b, 2);
   return a + b;
}
Shell
$ zig translate-c macro.c > macro.zig
macro.zig
pub export fn foo() c_int {
    var a: c_int = 1;
    _ = &a;
    var b: c_int = 2;
    _ = &b;
    return a + b;
}
pub const MAKELOCAL = @compileError("unable to translate C expr: unexpected token .Equal"); // macro.c:1:9

Note that foo was translated correctly despite using a non-translatable macro. MAKELOCAL was demoted to @compileError since it cannot be expressed as a Zig function; this simply means that you cannot directly use MAKELOCAL from Zig.

See also:

C Pointers §

This type is to be avoided whenever possible. The only valid reason for using a C pointer is in auto-generated code from translating C code.

When importing C header files, it is ambiguous whether pointers should be translated as single-item pointers (*T) or many-item pointers ([*]T). C pointers are a compromise so that Zig code can utilize translated header files directly.

[*c]T - C pointer.

  • Supports all the syntax of the other two pointer types (*T) and ([*]T).
  • Coerces to other pointer types, as well as Optional Pointers. When a C pointer is coerced to a non-optional pointer, safety-checked Undefined Behavior occurs if the address is 0.
  • Allows address 0. On non-freestanding targets, dereferencing address 0 is safety-checked Undefined Behavior. Optional C pointers introduce another bit to keep track of null, just like ?usize. Note that creating an optional C pointer is unnecessary as one can use normal Optional Pointers.
  • Supports Type Coercion to and from integers.
  • Supports comparison with integers.
  • Does not support Zig-only pointer attributes such as alignment. Use normal Pointers please!

When a C pointer is pointing to a single struct (not an array), dereference the C pointer to access the struct's fields or member data. That syntax looks like this:

ptr_to_struct.*.struct_member

This is comparable to doing -> in C.

When a C pointer is pointing to an array of structs, the syntax reverts to this:

ptr_to_struct_array[index].struct_member

C Variadic Functions §

Zig supports extern variadic functions.

test_variadic_function.zig
const std = @import("std");
const testing = std.testing;

pub extern "c" fn printf(format: [*:0]const u8, ...) c_int;

test "variadic function" {
    try testing.expect(printf("Hello, world!\n") == 14);
    try testing.expect(@typeInfo(@TypeOf(printf)).Fn.is_var_args);
}
Shell
$ zig test test_variadic_function.zig -lc
1/1 test_variadic_function.test.variadic function... OK
All 1 tests passed.
Hello, world!

Variadic functions can be implemented using @cVaStart, @cVaEnd, @cVaArg and @cVaCopy.

test_defining_variadic_function.zig
const std = @import("std");
const testing = std.testing;
const builtin = @import("builtin");

fn add(count: c_int, ...) callconv(.C) c_int {
    var ap = @cVaStart();
    defer @cVaEnd(&ap);
    var i: usize = 0;
    var sum: c_int = 0;
    while (i < count) : (i += 1) {
        sum += @cVaArg(&ap, c_int);
    }
    return sum;
}

test "defining a variadic function" {
    if (builtin.cpu.arch == .aarch64 and builtin.os.tag != .macos) {
        // https://github.com/ziglang/zig/issues/14096
        return error.SkipZigTest;
    }
    if (builtin.cpu.arch == .x86_64 and builtin.os.tag == .windows) {
        // https://github.com/ziglang/zig/issues/16961
        return error.SkipZigTest;
    }

    try std.testing.expectEqual(@as(c_int, 0), add(0));
    try std.testing.expectEqual(@as(c_int, 1), add(1, @as(c_int, 1)));
    try std.testing.expectEqual(@as(c_int, 3), add(2, @as(c_int, 1), @as(c_int, 2)));
}
Shell
$ zig test test_defining_variadic_function.zig
1/1 test_defining_variadic_function.test.defining a variadic function... OK
All 1 tests passed.

Exporting a C Library §

One of the primary use cases for Zig is exporting a library with the C ABI for other programming languages to call into. The export keyword in front of functions, variables, and types causes them to be part of the library API:

mathtest.zig
export fn add(a: i32, b: i32) i32 {
    return a + b;
}

To make a static library:

Shell
$ zig build-lib mathtest.zig

To make a shared library:

Shell
$ zig build-lib mathtest.zig -dynamic

Here is an example with the Zig Build System:

test.c
// This header is generated by zig from mathtest.zig
#include "mathtest.h"
#include <stdio.h>

int main(int argc, char **argv) {
    int32_t result = add(42, 1337);
    printf("%d\n", result);
    return 0;
}
build_c.zig
const std = @import("std");

pub fn build(b: *std.Build) void {
    const lib = b.addSharedLibrary(.{
        .name = "mathtest",
        .root_source_file = .{ .path = "mathtest.zig" },
        .version = .{ .major = 1, .minor = 0, .patch = 0 },
    });
    const exe = b.addExecutable(.{
        .name = "test",
    });
    exe.addCSourceFile(.{ .file = .{ .path = "test.c" }, .flags = &.{"-std=c99"} });
    exe.linkLibrary(lib);
    exe.linkSystemLibrary("c");

    b.default_step.dependOn(&exe.step);

    const run_cmd = exe.run();

    const test_step = b.step("test", "Test the program");
    test_step.dependOn(&run_cmd.step);
}
Shell
$ zig build test
1379

See also:

Mixing Object Files §

You can mix Zig object files with any other object files that respect the C ABI. Example:

base64.zig
const base64 = @import("std").base64;

export fn decode_base_64(
    dest_ptr: [*]u8,
    dest_len: usize,
    source_ptr: [*]const u8,
    source_len: usize,
) usize {
    const src = source_ptr[0..source_len];
    const dest = dest_ptr[0..dest_len];
    const base64_decoder = base64.standard.Decoder;
    const decoded_size = base64_decoder.calcSizeForSlice(src) catch unreachable;
    base64_decoder.decode(dest[0..decoded_size], src) catch unreachable;
    return decoded_size;
}
test.c
// This header is generated by zig from base64.zig
#include "base64.h"

#include <string.h>
#include <stdio.h>

int main(int argc, char **argv) {
    const char *encoded = "YWxsIHlvdXIgYmFzZSBhcmUgYmVsb25nIHRvIHVz";
    char buf[200];

    size_t len = decode_base_64(buf, 200, encoded, strlen(encoded));
    buf[len] = 0;
    puts(buf);

    return 0;
}
build_object.zig
const std = @import("std");

pub fn build(b: *std.Build) void {
    const obj = b.addObject(.{
        .name = "base64",
        .root_source_file = .{ .path = "base64.zig" },
    });

    const exe = b.addExecutable(.{
        .name = "test",
    });
    exe.addCSourceFile(.{ .file = .{ .path = "test.c" }, .flags = &.{"-std=c99",} });
    exe.addObject(obj);
    exe.linkSystemLibrary("c");
    b.installArtifact(exe);
}
Shell
$ zig build
$ ./zig-out/bin/test
all your base are belong to us

See also:

WebAssembly §

Zig supports building for WebAssembly out of the box.

Freestanding §

For host environments like the web browser and nodejs, build as an executable using the freestanding OS target. Here's an example of running Zig code compiled to WebAssembly with nodejs.

math.zig
extern fn print(i32) void;

export fn add(a: i32, b: i32) void {
    print(a + b);
}
Shell
$ zig build-exe math.zig -target wasm32-freestanding -fno-entry --export=add
test.js
const fs = require('fs');
const source = fs.readFileSync("./math.wasm");
const typedArray = new Uint8Array(source);

WebAssembly.instantiate(typedArray, {
  env: {
    print: (result) => { console.log(`The result is ${result}`); }
  }}).then(result => {
  const add = result.instance.exports.add;
  add(1, 2);
});
Shell
$ node test.js
The result is 3

WASI §

Zig's support for WebAssembly System Interface (WASI) is under active development. Example of using the standard library and reading command line arguments:

wasi_args.zig
const std = @import("std");

pub fn main() !void {
    var general_purpose_allocator = std.heap.GeneralPurposeAllocator(.{}){};
    const gpa = general_purpose_allocator.allocator();
    const args = try std.process.argsAlloc(gpa);
    defer std.process.argsFree(gpa, args);

    for (args, 0..) |arg, i| {
        std.debug.print("{}: {s}\n", .{ i, arg });
    }
}
Shell
$ zig build-exe wasi_args.zig -target wasm32-wasi
Shell
$ wasmtime wasi_args.wasm 123 hello
0: wasi_args.wasm
1: 123
2: hello

A more interesting example would be extracting the list of preopens from the runtime. This is now supported in the standard library via std.fs.wasi.Preopens:

wasi_preopens.zig
const std = @import("std");
const fs = std.fs;

pub fn main() !void {
    var general_purpose_allocator = std.heap.GeneralPurposeAllocator(.{}){};
    const gpa = general_purpose_allocator.allocator();

    var arena_instance = std.heap.ArenaAllocator.init(gpa);
    defer arena_instance.deinit();
    const arena = arena_instance.allocator();

    const preopens = try fs.wasi.preopensAlloc(arena);

    for (preopens.names, 0..) |preopen, i| {
        std.debug.print("{}: {s}\n", .{ i, preopen });
    }
}
Shell
$ zig build-exe wasi_preopens.zig -target wasm32-wasi
Shell
$ wasmtime --dir=. wasi_preopens.wasm
0: stdin
1: stdout
2: stderr
3: .

Targets §

Target refers to the computer that will be used to run an executable. It is composed of the CPU architecture, the set of enabled CPU features, operating system, minimum and maximum operating system version, ABI, and ABI version.

Zig is a general-purpose programming language which means that it is designed to generate optimal code for a large set of targets. The command zig targets provides information about all of the targets the compiler is aware of.

When no target option is provided to the compiler, the default choice is to target the host computer, meaning that the resulting executable will be unsuitable for copying to a different computer. In order to copy an executable to another computer, the compiler needs to know about the target requirements via the -target option.

The Zig Standard Library (@import("std")) has cross-platform abstractions, making the same source code viable on many targets. Some code is more portable than other code. In general, Zig code is extremely portable compared to other programming languages.

Each platform requires its own implementations to make Zig's cross-platform abstractions work. These implementations are at various degrees of completion. Each tagged release of the compiler comes with release notes that provide the full support table for each target.

Style Guide §

These coding conventions are not enforced by the compiler, but they are shipped in this documentation along with the compiler in order to provide a point of reference, should anyone wish to point to an authority on agreed upon Zig coding style.

Avoid Redundancy in Names §

Avoid these words in type names:

  • Value
  • Data
  • Context
  • Manager
  • utils, misc, or somebody's initials

Everything is a value, all types are data, everything is context, all logic manages state. Nothing is communicated by using a word that applies to all types.

Temptation to use "utilities", "miscellaneous", or somebody's initials is a failure to categorize, or more commonly, overcategorization. Such declarations can live at the root of a module that needs them with no namespace needed.

Avoid Redundant Names in Fully-Qualified Namespaces §

Every declaration is assigned a fully qualified namespace by the compiler, creating a tree structure. Choose names based on the fully-qualified namespace, and avoid redundant name segments.

redundant_fqn.zig
const std = @import("std");

pub const json = struct {
    pub const JsonValue = union(enum) {
        number: f64,
        boolean: bool,
        // ...
    };
};

pub fn main() void {
    std.debug.print("{s}\n", .{@typeName(json.JsonValue)});
}
Shell
$ zig build-exe redundant_fqn.zig
$ ./redundant_fqn
redundant_fqn.json.JsonValue

In this example, "json" is repeated in the fully-qualified namespace. The solution is to delete Json from JsonValue. In this example we have an empty struct named json but remember that files also act as part of the fully-qualified namespace.

This example is an exception to the rule specified in Avoid Redundancy in Names. The meaning of the type has been reduced to its core: it is a json value. The name cannot be any more specific without being incorrect.

Whitespace §

  • 4 space indentation
  • Open braces on same line, unless you need to wrap.
  • If a list of things is longer than 2, put each item on its own line and exercise the ability to put an extra comma at the end.
  • Line length: aim for 100; use common sense.

Names §

Roughly speaking: camelCaseFunctionName, TitleCaseTypeName, snake_case_variable_name. More precisely:

  • If x is a type then x should be TitleCase, unless it is a struct with 0 fields and is never meant to be instantiated, in which case it is considered to be a "namespace" and uses snake_case.
  • If x is callable, and x's return type is type, then x should be TitleCase.
  • If x is otherwise callable, then x should be camelCase.
  • Otherwise, x should be snake_case.

Acronyms, initialisms, proper nouns, or any other word that has capitalization rules in written English are subject to naming conventions just like any other word. Even acronyms that are only 2 letters long are subject to these conventions.

File names fall into two categories: types and namespaces. If the file (implicitly a struct) has top level fields, it should be named like any other struct with fields using TitleCase. Otherwise, it should use snake_case. Directory names should be snake_case.

These are general rules of thumb; if it makes sense to do something different, do what makes sense. For example, if there is an established convention such as ENOENT, follow the established convention.

Examples §

style_example.zig
const namespace_name = @import("dir_name/file_name.zig");
const TypeName = @import("dir_name/TypeName.zig");
var global_var: i32 = undefined;
const const_name = 42;
const primitive_type_alias = f32;
const string_alias = []u8;

const StructName = struct {
    field: i32,
};
const StructAlias = StructName;

fn functionName(param_name: TypeName) void {
    var functionPointer = functionName;
    functionPointer();
    functionPointer = otherFunction;
    functionPointer();
}
const functionAlias = functionName;

fn ListTemplateFunction(comptime ChildType: type, comptime fixed_size: usize) type {
    return List(ChildType, fixed_size);
}

fn ShortList(comptime T: type, comptime n: usize) type {
    return struct {
        field_name: [n]T,
        fn methodName() void {}
    };
}

// The word XML loses its casing when used in Zig identifiers.
const xml_document =
    \\<?xml version="1.0" encoding="UTF-8"?>
    \\<document>
    \\</document>
;
const XmlParser = struct {
    field: i32,
};

// The initials BE (Big Endian) are just another word in Zig identifier names.
fn readU32Be() u32 {}

See the Zig Standard Library for more examples.

Doc Comment Guidance §

  • Omit any information that is redundant based on the name of the thing being documented.
  • Duplicating information onto multiple similar functions is encouraged because it helps IDEs and other tools provide better help text.
  • Use the word assume to indicate invariants that cause Undefined Behavior when violated.
  • Use the word assert to indicate invariants that cause safety-checked Undefined Behavior when violated.

Source Encoding §

Zig source code is encoded in UTF-8. An invalid UTF-8 byte sequence results in a compile error.

Throughout all zig source code (including in comments), some code points are never allowed:

  • Ascii control characters, except for U+000a (LF), U+000d (CR), and U+0009 (HT): U+0000 - U+0008, U+000b - U+000c, U+000e - U+0001f, U+007f.
  • Non-Ascii Unicode line endings: U+0085 (NEL), U+2028 (LS), U+2029 (PS).

LF (byte value 0x0a, code point U+000a, '\n') is the line terminator in Zig source code. This byte value terminates every line of zig source code except the last line of the file. It is recommended that non-empty source files end with an empty line, which means the last byte would be 0x0a (LF).

Each LF may be immediately preceded by a single CR (byte value 0x0d, code point U+000d, '\r') to form a Windows style line ending, but this is discouraged. Note that in multiline strings, CRLF sequences will be encoded as LF when compiled into a zig program. A CR in any other context is not allowed.

HT hard tabs (byte value 0x09, code point U+0009, '\t') are interchangeable with SP spaces (byte value 0x20, code point U+0020, ' ') as a token separator, but use of hard tabs is discouraged. See Grammar.

For compatibility with other tools, the compiler ignores a UTF-8-encoded byte order mark (U+FEFF) if it is the first Unicode code point in the source text. A byte order mark is not allowed anywhere else in the source.

Note that running zig fmt on a source file will implement all recommendations mentioned here.

Note that a tool reading Zig source code can make assumptions if the source code is assumed to be correct Zig code. For example, when identifying the ends of lines, a tool can use a naive search such as /\n/, or an advanced search such as /\r\n?|[\n\u0085\u2028\u2029]/, and in either case line endings will be correctly identified. For another example, when identifying the whitespace before the first token on a line, a tool can either use a naive search such as /[ \t]/, or an advanced search such as /\s/, and in either case whitespace will be correctly identified.

Keyword Reference §

Keyword Description
addrspace
The addrspace keyword.
  • TODO add documentation for addrspace
align
align can be used to specify the alignment of a pointer. It can also be used after a variable or function declaration to specify the alignment of pointers to that variable or function.
allowzero
The pointer attribute allowzero allows a pointer to have address zero.
and
The boolean operator and.
anyframe
anyframe can be used as a type for variables which hold pointers to function frames.
anytype
Function parameters can be declared with anytype in place of the type. The type will be inferred where the function is called.
asm
asm begins an inline assembly expression. This allows for directly controlling the machine code generated on compilation.
async
async can be used before a function call to get a pointer to the function's frame when it suspends.
await
await can be used to suspend the current function until the frame provided after the await completes. await copies the value returned from the target function's frame to the caller.
break
break can be used with a block label to return a value from the block. It can also be used to exit a loop before iteration completes naturally.
callconv
callconv can be used to specify the calling convention in a function type.
catch
catch can be used to evaluate an expression if the expression before it evaluates to an error. The expression after the catch can optionally capture the error value.
comptime
comptime before a declaration can be used to label variables or function parameters as known at compile time. It can also be used to guarantee an expression is run at compile time.
const
const declares a variable that can not be modified. Used as a pointer attribute, it denotes the value referenced by the pointer cannot be modified.
continue
continue can be used in a loop to jump back to the beginning of the loop.
defer
defer will execute an expression when control flow leaves the current block.
else
else can be used to provide an alternate branch for if, switch, while, and for expressions.
  • If used after an if expression, the else branch will be executed if the test value returns false, null, or an error.
  • If used within a switch expression, the else branch will be executed if the test value matches no other cases.
  • If used after a loop expression, the else branch will be executed if the loop finishes without breaking.
  • See also if, switch, while, for
enum
enum defines an enum type.
errdefer
errdefer will execute an expression when control flow leaves the current block if the function returns an error, the errdefer expression can capture the unwrapped value.
error
error defines an error type.
export
export makes a function or variable externally visible in the generated object file. Exported functions default to the C calling convention.
extern
extern can be used to declare a function or variable that will be resolved at link time, when linking statically or at runtime, when linking dynamically.
fn
fn declares a function.
for
A for expression can be used to iterate over the elements of a slice, array, or tuple.
if
An if expression can test boolean expressions, optional values, or error unions. For optional values or error unions, the if expression can capture the unwrapped value.
  • See also if
inline
inline can be used to label a loop expression such that it will be unrolled at compile time. It can also be used to force a function to be inlined at all call sites.
linksection
The linksection keyword can be used to specify what section the function or global variable will be put into (e.g. .text).
noalias
The noalias keyword.
  • TODO add documentation for noalias
noinline
noinline disallows function to be inlined in all call sites.
nosuspend
The nosuspend keyword can be used in front of a block, statement or expression, to mark a scope where no suspension points are reached. In particular, inside a nosuspend scope:
  • Using the suspend keyword results in a compile error.
  • Using await on a function frame which hasn't completed yet results in safety-checked Undefined Behavior.
  • Calling an async function may result in safety-checked Undefined Behavior, because it's equivalent to await async some_async_fn(), which contains an await.
Code inside a nosuspend scope does not cause the enclosing function to become an async function.
opaque
opaque defines an opaque type.
or
The boolean operator or.
orelse
orelse can be used to evaluate an expression if the expression before it evaluates to null.
packed
The packed keyword before a struct definition changes the struct's in-memory layout to the guaranteed packed layout.
pub
The pub in front of a top level declaration makes the declaration available to reference from a different file than the one it is declared in.
resume
resume will continue execution of a function frame after the point the function was suspended.
return
return exits a function with a value.
struct
struct defines a struct.
suspend
suspend will cause control flow to return to the call site or resumer of the function. suspend can also be used before a block within a function, to allow the function access to its frame before control flow returns to the call site.
switch
A switch expression can be used to test values of a common type. switch cases can capture field values of a Tagged union.
test
The test keyword can be used to denote a top-level block of code used to make sure behavior meets expectations.
threadlocal
threadlocal can be used to specify a variable as thread-local.
try
try evaluates an error union expression. If it is an error, it returns from the current function with the same error. Otherwise, the expression results in the unwrapped value.
union
union defines a union.
unreachable
unreachable can be used to assert that control flow will never happen upon a particular location. Depending on the build mode, unreachable may emit a panic.
  • Emits a panic in Debug and ReleaseSafe mode, or when using zig test.
  • Does not emit a panic in ReleaseFast and ReleaseSmall mode.
  • See also unreachable
usingnamespace
usingnamespace is a top-level declaration that imports all the public declarations of the operand, which must be a struct, union, or enum, into the current scope.
var
var declares a variable that may be modified.
volatile
volatile can be used to denote loads or stores of a pointer have side effects. It can also modify an inline assembly expression to denote it has side effects.
while
A while expression can be used to repeatedly test a boolean, optional, or error union expression, and cease looping when that expression evaluates to false, null, or an error, respectively.

Appendix §

Containers §

A container in Zig is any syntactical construct that acts as a namespace to hold variable and function declarations. Containers are also type definitions which can be instantiated. Structs, enums, unions, opaques, and even Zig source files themselves are containers.

Although containers (except Zig source files) use curly braces to surround their definition, they should not be confused with blocks or functions. Containers do not contain statements.

Grammar §

grammar.y
Root <- skip container_doc_comment? ContainerMembers eof

# *** Top level ***
ContainerMembers <- ContainerDeclaration* (ContainerField COMMA)* (ContainerField / ContainerDeclaration*)

ContainerDeclaration <- TestDecl / ComptimeDecl / doc_comment? KEYWORD_pub? Decl

TestDecl <- KEYWORD_test (STRINGLITERALSINGLE / IDENTIFIER)? Block

ComptimeDecl <- KEYWORD_comptime Block

Decl
    <- (KEYWORD_export / KEYWORD_extern STRINGLITERALSINGLE? / KEYWORD_inline / KEYWORD_noinline)? FnProto (SEMICOLON / Block)
     / (KEYWORD_export / KEYWORD_extern STRINGLITERALSINGLE?)? KEYWORD_threadlocal? GlobalVarDecl
     / KEYWORD_usingnamespace Expr SEMICOLON

FnProto <- KEYWORD_fn IDENTIFIER? LPAREN ParamDeclList RPAREN ByteAlign? AddrSpace? LinkSection? CallConv? EXCLAMATIONMARK? TypeExpr

VarDeclProto <- (KEYWORD_const / KEYWORD_var) IDENTIFIER (COLON TypeExpr)? ByteAlign? AddrSpace? LinkSection?

GlobalVarDecl <- VarDeclProto (EQUAL Expr)? SEMICOLON

ContainerField <- doc_comment? KEYWORD_comptime? !KEYWORD_fn (IDENTIFIER COLON)? TypeExpr ByteAlign? (EQUAL Expr)?

# *** Block Level ***
Statement
    <- KEYWORD_comptime ComptimeStatement
     / KEYWORD_nosuspend BlockExprStatement
     / KEYWORD_suspend BlockExprStatement
     / KEYWORD_defer BlockExprStatement
     / KEYWORD_errdefer Payload? BlockExprStatement
     / IfStatement
     / LabeledStatement
     / SwitchExpr
     / VarDeclExprStatement

ComptimeStatement
    <- BlockExpr
     / VarDeclExprStatement

IfStatement
    <- IfPrefix BlockExpr ( KEYWORD_else Payload? Statement )?
     / IfPrefix AssignExpr ( SEMICOLON / KEYWORD_else Payload? Statement )

LabeledStatement <- BlockLabel? (Block / LoopStatement)

LoopStatement <- KEYWORD_inline? (ForStatement / WhileStatement)

ForStatement
    <- ForPrefix BlockExpr ( KEYWORD_else Statement )?
     / ForPrefix AssignExpr ( SEMICOLON / KEYWORD_else Statement )

WhileStatement
    <- WhilePrefix BlockExpr ( KEYWORD_else Payload? Statement )?
     / WhilePrefix AssignExpr ( SEMICOLON / KEYWORD_else Payload? Statement )

BlockExprStatement
    <- BlockExpr
     / AssignExpr SEMICOLON

BlockExpr <- BlockLabel? Block

# An expression, assignment, or any destructure, as a statement.
VarDeclExprStatement
    <- VarDeclProto (COMMA (VarDeclProto / Expr))* EQUAL Expr SEMICOLON
     / Expr (AssignOp Expr / (COMMA (VarDeclProto / Expr))+ EQUAL Expr)? SEMICOLON

# *** Expression Level ***

# An assignment or a destructure whose LHS are all lvalue expressions.
AssignExpr <- Expr (AssignOp Expr / (COMMA Expr)+ EQUAL Expr)?

SingleAssignExpr <- Expr (AssignOp Expr)?

Expr <- BoolOrExpr

BoolOrExpr <- BoolAndExpr (KEYWORD_or BoolAndExpr)*

BoolAndExpr <- CompareExpr (KEYWORD_and CompareExpr)*

CompareExpr <- BitwiseExpr (CompareOp BitwiseExpr)?

BitwiseExpr <- BitShiftExpr (BitwiseOp BitShiftExpr)*

BitShiftExpr <- AdditionExpr (BitShiftOp AdditionExpr)*

AdditionExpr <- MultiplyExpr (AdditionOp MultiplyExpr)*

MultiplyExpr <- PrefixExpr (MultiplyOp PrefixExpr)*

PrefixExpr <- PrefixOp* PrimaryExpr

PrimaryExpr
    <- AsmExpr
     / IfExpr
     / KEYWORD_break BreakLabel? Expr?
     / KEYWORD_comptime Expr
     / KEYWORD_nosuspend Expr
     / KEYWORD_continue BreakLabel?
     / KEYWORD_resume Expr
     / KEYWORD_return Expr?
     / BlockLabel? LoopExpr
     / Block
     / CurlySuffixExpr

IfExpr <- IfPrefix Expr (KEYWORD_else Payload? Expr)?

Block <- LBRACE Statement* RBRACE

LoopExpr <- KEYWORD_inline? (ForExpr / WhileExpr)

ForExpr <- ForPrefix Expr (KEYWORD_else Expr)?

WhileExpr <- WhilePrefix Expr (KEYWORD_else Payload? Expr)?

CurlySuffixExpr <- TypeExpr InitList?

InitList
    <- LBRACE FieldInit (COMMA FieldInit)* COMMA? RBRACE
     / LBRACE Expr (COMMA Expr)* COMMA? RBRACE
     / LBRACE RBRACE

TypeExpr <- PrefixTypeOp* ErrorUnionExpr

ErrorUnionExpr <- SuffixExpr (EXCLAMATIONMARK TypeExpr)?

SuffixExpr
    <- KEYWORD_async PrimaryTypeExpr SuffixOp* FnCallArguments
     / PrimaryTypeExpr (SuffixOp / FnCallArguments)*

PrimaryTypeExpr
    <- BUILTINIDENTIFIER FnCallArguments
     / CHAR_LITERAL
     / ContainerDecl
     / DOT IDENTIFIER
     / DOT InitList
     / ErrorSetDecl
     / FLOAT
     / FnProto
     / GroupedExpr
     / LabeledTypeExpr
     / IDENTIFIER
     / IfTypeExpr
     / INTEGER
     / KEYWORD_comptime TypeExpr
     / KEYWORD_error DOT IDENTIFIER
     / KEYWORD_anyframe
     / KEYWORD_unreachable
     / STRINGLITERAL
     / SwitchExpr

ContainerDecl <- (KEYWORD_extern / KEYWORD_packed)? ContainerDeclAuto

ErrorSetDecl <- KEYWORD_error LBRACE IdentifierList RBRACE

GroupedExpr <- LPAREN Expr RPAREN

IfTypeExpr <- IfPrefix TypeExpr (KEYWORD_else Payload? TypeExpr)?

LabeledTypeExpr
    <- BlockLabel Block
     / BlockLabel? LoopTypeExpr

LoopTypeExpr <- KEYWORD_inline? (ForTypeExpr / WhileTypeExpr)

ForTypeExpr <- ForPrefix TypeExpr (KEYWORD_else TypeExpr)?

WhileTypeExpr <- WhilePrefix TypeExpr (KEYWORD_else Payload? TypeExpr)?

SwitchExpr <- KEYWORD_switch LPAREN Expr RPAREN LBRACE SwitchProngList RBRACE

# *** Assembly ***
AsmExpr <- KEYWORD_asm KEYWORD_volatile? LPAREN Expr AsmOutput? RPAREN

AsmOutput <- COLON AsmOutputList AsmInput?

AsmOutputItem <- LBRACKET IDENTIFIER RBRACKET STRINGLITERAL LPAREN (MINUSRARROW TypeExpr / IDENTIFIER) RPAREN

AsmInput <- COLON AsmInputList AsmClobbers?

AsmInputItem <- LBRACKET IDENTIFIER RBRACKET STRINGLITERAL LPAREN Expr RPAREN

AsmClobbers <- COLON StringList

# *** Helper grammar ***
BreakLabel <- COLON IDENTIFIER

BlockLabel <- IDENTIFIER COLON

FieldInit <- DOT IDENTIFIER EQUAL Expr

WhileContinueExpr <- COLON LPAREN AssignExpr RPAREN

LinkSection <- KEYWORD_linksection LPAREN Expr RPAREN

AddrSpace <- KEYWORD_addrspace LPAREN Expr RPAREN

# Fn specific
CallConv <- KEYWORD_callconv LPAREN Expr RPAREN

ParamDecl
    <- doc_comment? (KEYWORD_noalias / KEYWORD_comptime)? (IDENTIFIER COLON)? ParamType
     / DOT3

ParamType
    <- KEYWORD_anytype
     / TypeExpr

# Control flow prefixes
IfPrefix <- KEYWORD_if LPAREN Expr RPAREN PtrPayload?

WhilePrefix <- KEYWORD_while LPAREN Expr RPAREN PtrPayload? WhileContinueExpr?

ForPrefix <- KEYWORD_for LPAREN ForArgumentsList RPAREN PtrListPayload

# Payloads
Payload <- PIPE IDENTIFIER PIPE

PtrPayload <- PIPE ASTERISK? IDENTIFIER PIPE

PtrIndexPayload <- PIPE ASTERISK? IDENTIFIER (COMMA IDENTIFIER)? PIPE

PtrListPayload <- PIPE ASTERISK? IDENTIFIER (COMMA ASTERISK? IDENTIFIER)* COMMA? PIPE

# Switch specific
SwitchProng <- KEYWORD_inline? SwitchCase EQUALRARROW PtrIndexPayload? SingleAssignExpr

SwitchCase
    <- SwitchItem (COMMA SwitchItem)* COMMA?
     / KEYWORD_else

SwitchItem <- Expr (DOT3 Expr)?

# For specific
ForArgumentsList <- ForItem (COMMA ForItem)* COMMA?

ForItem <- Expr (DOT2 Expr?)?

# Operators
AssignOp
    <- ASTERISKEQUAL
     / ASTERISKPIPEEQUAL
     / SLASHEQUAL
     / PERCENTEQUAL
     / PLUSEQUAL
     / PLUSPIPEEQUAL
     / MINUSEQUAL
     / MINUSPIPEEQUAL
     / LARROW2EQUAL
     / LARROW2PIPEEQUAL
     / RARROW2EQUAL
     / AMPERSANDEQUAL
     / CARETEQUAL
     / PIPEEQUAL
     / ASTERISKPERCENTEQUAL
     / PLUSPERCENTEQUAL
     / MINUSPERCENTEQUAL
     / EQUAL

CompareOp
    <- EQUALEQUAL
     / EXCLAMATIONMARKEQUAL
     / LARROW
     / RARROW
     / LARROWEQUAL
     / RARROWEQUAL

BitwiseOp
    <- AMPERSAND
     / CARET
     / PIPE
     / KEYWORD_orelse
     / KEYWORD_catch Payload?

BitShiftOp
    <- LARROW2
     / RARROW2
     / LARROW2PIPE

AdditionOp
    <- PLUS
     / MINUS
     / PLUS2
     / PLUSPERCENT
     / MINUSPERCENT
     / PLUSPIPE
     / MINUSPIPE

MultiplyOp
    <- PIPE2
     / ASTERISK
     / SLASH
     / PERCENT
     / ASTERISK2
     / ASTERISKPERCENT
     / ASTERISKPIPE

PrefixOp
    <- EXCLAMATIONMARK
     / MINUS
     / TILDE
     / MINUSPERCENT
     / AMPERSAND
     / KEYWORD_try
     / KEYWORD_await

PrefixTypeOp
    <- QUESTIONMARK
     / KEYWORD_anyframe MINUSRARROW
     / SliceTypeStart (ByteAlign / AddrSpace / KEYWORD_const / KEYWORD_volatile / KEYWORD_allowzero)*
     / PtrTypeStart (AddrSpace / KEYWORD_align LPAREN Expr (COLON Expr COLON Expr)? RPAREN / KEYWORD_const / KEYWORD_volatile / KEYWORD_allowzero)*
     / ArrayTypeStart

SuffixOp
    <- LBRACKET Expr (DOT2 (Expr? (COLON Expr)?)?)? RBRACKET
     / DOT IDENTIFIER
     / DOTASTERISK
     / DOTQUESTIONMARK

FnCallArguments <- LPAREN ExprList RPAREN

# Ptr specific
SliceTypeStart <- LBRACKET (COLON Expr)? RBRACKET

PtrTypeStart
    <- ASTERISK
     / ASTERISK2
     / LBRACKET ASTERISK (LETTERC / COLON Expr)? RBRACKET

ArrayTypeStart <- LBRACKET Expr (COLON Expr)? RBRACKET

# ContainerDecl specific
ContainerDeclAuto <- ContainerDeclType LBRACE container_doc_comment? ContainerMembers RBRACE

ContainerDeclType
    <- KEYWORD_struct (LPAREN Expr RPAREN)?
     / KEYWORD_opaque
     / KEYWORD_enum (LPAREN Expr RPAREN)?
     / KEYWORD_union (LPAREN (KEYWORD_enum (LPAREN Expr RPAREN)? / Expr) RPAREN)?

# Alignment
ByteAlign <- KEYWORD_align LPAREN Expr RPAREN

# Lists
IdentifierList <- (doc_comment? IDENTIFIER COMMA)* (doc_comment? IDENTIFIER)?

SwitchProngList <- (SwitchProng COMMA)* SwitchProng?

AsmOutputList <- (AsmOutputItem COMMA)* AsmOutputItem?

AsmInputList <- (AsmInputItem COMMA)* AsmInputItem?

StringList <- (STRINGLITERAL COMMA)* STRINGLITERAL?

ParamDeclList <- (ParamDecl COMMA)* ParamDecl?

ExprList <- (Expr COMMA)* Expr?

# *** Tokens ***
eof <- !.
bin <- [01]
bin_ <- '_'? bin
oct <- [0-7]
oct_ <- '_'? oct
hex <- [0-9a-fA-F]
hex_ <- '_'? hex
dec <- [0-9]
dec_ <- '_'? dec

bin_int <- bin bin_*
oct_int <- oct oct_*
dec_int <- dec dec_*
hex_int <- hex hex_*

ox80_oxBF <- [\200-\277]
oxF4 <- '\364'
ox80_ox8F <- [\200-\217]
oxF1_oxF3 <- [\361-\363]
oxF0 <- '\360'
ox90_0xBF <- [\220-\277]
oxEE_oxEF <- [\356-\357]
oxED <- '\355'
ox80_ox9F <- [\200-\237]
oxE1_oxEC <- [\341-\354]
oxE0 <- '\340'
oxA0_oxBF <- [\240-\277]
oxC2_oxDF <- [\302-\337]

# From https://lemire.me/blog/2018/05/09/how-quickly-can-you-check-that-a-string-is-valid-unicode-utf-8/
# First Byte      Second Byte     Third Byte      Fourth Byte
# [0x00,0x7F]
# [0xC2,0xDF]     [0x80,0xBF]
#    0xE0         [0xA0,0xBF]     [0x80,0xBF]
# [0xE1,0xEC]     [0x80,0xBF]     [0x80,0xBF]
#    0xED         [0x80,0x9F]     [0x80,0xBF]
# [0xEE,0xEF]     [0x80,0xBF]     [0x80,0xBF]
#    0xF0         [0x90,0xBF]     [0x80,0xBF]     [0x80,0xBF]
# [0xF1,0xF3]     [0x80,0xBF]     [0x80,0xBF]     [0x80,0xBF]
#    0xF4         [0x80,0x8F]     [0x80,0xBF]     [0x80,0xBF]

mb_utf8_literal <-
       oxF4      ox80_ox8F ox80_oxBF ox80_oxBF
     / oxF1_oxF3 ox80_oxBF ox80_oxBF ox80_oxBF
     / oxF0      ox90_0xBF ox80_oxBF ox80_oxBF
     / oxEE_oxEF ox80_oxBF ox80_oxBF
     / oxED      ox80_ox9F ox80_oxBF
     / oxE1_oxEC ox80_oxBF ox80_oxBF
     / oxE0      oxA0_oxBF ox80_oxBF
     / oxC2_oxDF ox80_oxBF

ascii_char_not_nl_slash_squote <- [\000-\011\013-\046\050-\133\135-\177]

char_escape
    <- "\\x" hex hex
     / "\\u{" hex+ "}"
     / "\\" [nr\\t'"]
char_char
    <- mb_utf8_literal
     / char_escape
     / ascii_char_not_nl_slash_squote

string_char
    <- char_escape
     / [^\\"\n]

container_doc_comment <- ('//!' [^\n]* [ \n]* skip)+
doc_comment <- ('///' [^\n]* [ \n]* skip)+
line_comment <- '//' ![!/][^\n]* / '////' [^\n]*
line_string <- ("\\\\" [^\n]* [ \n]*)+
skip <- ([ \n] / line_comment)*

CHAR_LITERAL <- "'" char_char "'" skip
FLOAT
    <- "0x" hex_int "." hex_int ([pP] [-+]? dec_int)? skip
     /      dec_int "." dec_int ([eE] [-+]? dec_int)? skip
     / "0x" hex_int [pP] [-+]? dec_int skip
     /      dec_int [eE] [-+]? dec_int skip
INTEGER
    <- "0b" bin_int skip
     / "0o" oct_int skip
     / "0x" hex_int skip
     /      dec_int   skip
STRINGLITERALSINGLE <- "\"" string_char* "\"" skip
STRINGLITERAL
    <- STRINGLITERALSINGLE
     / (line_string                 skip)+
IDENTIFIER
    <- !keyword [A-Za-z_] [A-Za-z0-9_]* skip
     / "@" STRINGLITERALSINGLE
BUILTINIDENTIFIER <- "@"[A-Za-z_][A-Za-z0-9_]* skip


AMPERSAND            <- '&'      ![=]      skip
AMPERSANDEQUAL       <- '&='               skip
ASTERISK             <- '*'      ![*%=|]   skip
ASTERISK2            <- '**'               skip
ASTERISKEQUAL        <- '*='               skip
ASTERISKPERCENT      <- '*%'     ![=]      skip
ASTERISKPERCENTEQUAL <- '*%='              skip
ASTERISKPIPE         <- '*|'     ![=]      skip
ASTERISKPIPEEQUAL    <- '*|='              skip
CARET                <- '^'      ![=]      skip
CARETEQUAL           <- '^='               skip
COLON                <- ':'                skip
COMMA                <- ','                skip
DOT                  <- '.'      ![*.?]    skip
DOT2                 <- '..'     ![.]      skip
DOT3                 <- '...'              skip
DOTASTERISK          <- '.*'               skip
DOTQUESTIONMARK      <- '.?'               skip
EQUAL                <- '='      ![>=]     skip
EQUALEQUAL           <- '=='               skip
EQUALRARROW          <- '=>'               skip
EXCLAMATIONMARK      <- '!'      ![=]      skip
EXCLAMATIONMARKEQUAL <- '!='               skip
LARROW               <- '<'      ![<=]     skip
LARROW2              <- '<<'     ![=|]     skip
LARROW2EQUAL         <- '<<='              skip
LARROW2PIPE          <- '<<|'    ![=]      skip
LARROW2PIPEEQUAL     <- '<<|='             skip
LARROWEQUAL          <- '<='               skip
LBRACE               <- '{'                skip
LBRACKET             <- '['                skip
LPAREN               <- '('                skip
MINUS                <- '-'      ![%=>|]   skip
MINUSEQUAL           <- '-='               skip
MINUSPERCENT         <- '-%'     ![=]      skip
MINUSPERCENTEQUAL    <- '-%='              skip
MINUSPIPE            <- '-|'     ![=]      skip
MINUSPIPEEQUAL       <- '-|='              skip
MINUSRARROW          <- '->'               skip
PERCENT              <- '%'      ![=]      skip
PERCENTEQUAL         <- '%='               skip
PIPE                 <- '|'      ![|=]     skip
PIPE2                <- '||'               skip
PIPEEQUAL            <- '|='               skip
PLUS                 <- '+'      ![%+=|]   skip
PLUS2                <- '++'               skip
PLUSEQUAL            <- '+='               skip
PLUSPERCENT          <- '+%'     ![=]      skip
PLUSPERCENTEQUAL     <- '+%='              skip
PLUSPIPE             <- '+|'     ![=]      skip
PLUSPIPEEQUAL        <- '+|='              skip
LETTERC              <- 'c'                skip
QUESTIONMARK         <- '?'                skip
RARROW               <- '>'      ![>=]     skip
RARROW2              <- '>>'     ![=]      skip
RARROW2EQUAL         <- '>>='              skip
RARROWEQUAL          <- '>='               skip
RBRACE               <- '}'                skip
RBRACKET             <- ']'                skip
RPAREN               <- ')'                skip
SEMICOLON            <- ';'                skip
SLASH                <- '/'      ![=]      skip
SLASHEQUAL           <- '/='               skip
TILDE                <- '~'                skip

end_of_word <- ![a-zA-Z0-9_] skip
KEYWORD_addrspace   <- 'addrspace'   end_of_word
KEYWORD_align       <- 'align'       end_of_word
KEYWORD_allowzero   <- 'allowzero'   end_of_word
KEYWORD_and         <- 'and'         end_of_word
KEYWORD_anyframe    <- 'anyframe'    end_of_word
KEYWORD_anytype     <- 'anytype'     end_of_word
KEYWORD_asm         <- 'asm'         end_of_word
KEYWORD_async       <- 'async'       end_of_word
KEYWORD_await       <- 'await'       end_of_word
KEYWORD_break       <- 'break'       end_of_word
KEYWORD_callconv    <- 'callconv'    end_of_word
KEYWORD_catch       <- 'catch'       end_of_word
KEYWORD_comptime    <- 'comptime'    end_of_word
KEYWORD_const       <- 'const'       end_of_word
KEYWORD_continue    <- 'continue'    end_of_word
KEYWORD_defer       <- 'defer'       end_of_word
KEYWORD_else        <- 'else'        end_of_word
KEYWORD_enum        <- 'enum'        end_of_word
KEYWORD_errdefer    <- 'errdefer'    end_of_word
KEYWORD_error       <- 'error'       end_of_word
KEYWORD_export      <- 'export'      end_of_word
KEYWORD_extern      <- 'extern'      end_of_word
KEYWORD_fn          <- 'fn'          end_of_word
KEYWORD_for         <- 'for'         end_of_word
KEYWORD_if          <- 'if'          end_of_word
KEYWORD_inline      <- 'inline'      end_of_word
KEYWORD_noalias     <- 'noalias'     end_of_word
KEYWORD_nosuspend   <- 'nosuspend'   end_of_word
KEYWORD_noinline    <- 'noinline'    end_of_word
KEYWORD_opaque      <- 'opaque'      end_of_word
KEYWORD_or          <- 'or'          end_of_word
KEYWORD_orelse      <- 'orelse'      end_of_word
KEYWORD_packed      <- 'packed'      end_of_word
KEYWORD_pub         <- 'pub'         end_of_word
KEYWORD_resume      <- 'resume'      end_of_word
KEYWORD_return      <- 'return'      end_of_word
KEYWORD_linksection <- 'linksection' end_of_word
KEYWORD_struct      <- 'struct'      end_of_word
KEYWORD_suspend     <- 'suspend'     end_of_word
KEYWORD_switch      <- 'switch'      end_of_word
KEYWORD_test        <- 'test'        end_of_word
KEYWORD_threadlocal <- 'threadlocal' end_of_word
KEYWORD_try         <- 'try'         end_of_word
KEYWORD_union       <- 'union'       end_of_word
KEYWORD_unreachable <- 'unreachable' end_of_word
KEYWORD_usingnamespace <- 'usingnamespace' end_of_word
KEYWORD_var         <- 'var'         end_of_word
KEYWORD_volatile    <- 'volatile'    end_of_word
KEYWORD_while       <- 'while'       end_of_word

keyword <- KEYWORD_addrspace / KEYWORD_align / KEYWORD_allowzero / KEYWORD_and
         / KEYWORD_anyframe / KEYWORD_anytype / KEYWORD_asm / KEYWORD_async
         / KEYWORD_await / KEYWORD_break / KEYWORD_callconv / KEYWORD_catch
         / KEYWORD_comptime / KEYWORD_const / KEYWORD_continue / KEYWORD_defer
         / KEYWORD_else / KEYWORD_enum / KEYWORD_errdefer / KEYWORD_error / KEYWORD_export
         / KEYWORD_extern / KEYWORD_fn / KEYWORD_for / KEYWORD_if
         / KEYWORD_inline / KEYWORD_noalias / KEYWORD_nosuspend / KEYWORD_noinline
         / KEYWORD_opaque / KEYWORD_or / KEYWORD_orelse / KEYWORD_packed
         / KEYWORD_pub / KEYWORD_resume / KEYWORD_return / KEYWORD_linksection
         / KEYWORD_struct / KEYWORD_suspend / KEYWORD_switch / KEYWORD_test
         / KEYWORD_threadlocal / KEYWORD_try / KEYWORD_union / KEYWORD_unreachable
         / KEYWORD_usingnamespace / KEYWORD_var / KEYWORD_volatile / KEYWORD_while

Zen §

  • Communicate intent precisely.
  • Edge cases matter.
  • Favor reading code over writing code.
  • Only one obvious way to do things.
  • Runtime crashes are better than bugs.
  • Compile errors are better than runtime crashes.
  • Incremental improvements.
  • Avoid local maximums.
  • Reduce the amount one must remember.
  • Focus on code rather than style.
  • Resource allocation may fail; resource deallocation must succeed.
  • Memory is a resource.
  • Together we serve the users.