Zig is an open-source programming language designed for robustness, optimality, and clarity.
Often the most efficient way to learn something new is to see examples, so this documentation shows how to use each of Zig's features. It is all on one page so you can search with your browser's search tool.
const io = @import("std").io;
pub fn main() -> %void {
%%io.stdout.printf("Hello, world!\n");
}
$ zig build-exe hello.zig
$ ./hello
Hello, world!
See also:
const io = @import("std").io;
const os = @import("std").os;
// error declaration, makes `error.ArgNotFound` available
error ArgNotFound;
pub fn main() -> %void {
// integers
const one_plus_one: i32 = 1 + 1;
%%io.stdout.printf("1 + 1 = {}\n", one_plus_one);
// floats
const seven_div_three: f32 = 7.0 / 3.0;
%%io.stdout.printf("7.0 / 3.0 = {}\n", seven_div_three);
// boolean
%%io.stdout.printf("{}\n{}\n{}\n",
true and false,
true or false,
!true);
// nullable
const nullable_value = if (os.args.count() >= 2) os.args.at(1) else null;
%%io.stdout.printf("\nnullable\ntype: {}\nvalue: {}\n",
@typeName(@typeOf(nullable_value)), nullable_value);
// error union
const number_or_error = if (os.args.count() >= 3) os.args.at(2) else error.ArgNotFound;
%%io.stdout.printf("\nerror union\ntype: {}\nvalue: {}\n",
@typeName(@typeOf(number_or_error)), number_or_error);
}
$ zig build-exe values.zig
$ ./values
1 + 1 = 2
7.0 / 3.0 = 2.333333
false
true
false
nullable
type: ?[]const u8
value: null
error union
type: %[]const u8
value: error.ArgNotFound
Name | C Equivalent | Description |
---|---|---|
i2 |
(none) |
signed 2-bit integer |
u2 |
(none) |
unsigned 2-bit integer |
i3 |
(none) |
signed 3-bit integer |
u3 |
(none) |
unsigned 3-bit integer |
i4 |
(none) |
signed 4-bit integer |
u4 |
(none) |
unsigned 4-bit integer |
i5 |
(none) |
signed 5-bit integer |
u5 |
(none) |
unsigned 5-bit integer |
i6 |
(none) |
signed 6-bit integer |
u6 |
(none) |
unsigned 6-bit integer |
i7 |
(none) |
signed 7-bit integer |
u7 |
(none) |
unsigned 7-bit integer |
i8 |
int8_t |
signed 8-bit integer |
u8 |
uint8_t |
unsigned 8-bit integer |
i16 |
int16_t |
signed 16-bit integer |
u16 |
uint16_t |
unsigned 16-bit integer |
i32 |
int32_t |
signed 32-bit integer |
u32 |
uint32_t |
unsigned 32-bit integer |
i64 |
int64_t |
signed 64-bit integer |
u64 |
uint64_t |
unsigned 64-bit integer |
i128 |
__int128 |
signed 128-bit integer |
u128 |
unsigned __int128 |
unsigned 128-bit integer |
isize |
intptr_t |
signed pointer sized integer |
usize |
uintptr_t |
unsigned pointer sized integer |
c_short |
short |
for ABI compatibility with C |
c_ushort |
unsigned short |
for ABI compatibility with C |
c_int |
int |
for ABI compatibility with C |
c_uint |
unsigned int |
for ABI compatibility with C |
c_long |
long |
for ABI compatibility with C |
c_ulong |
unsigned long |
for ABI compatibility with C |
c_longlong |
long long |
for ABI compatibility with C |
c_ulonglong |
unsigned long long |
for ABI compatibility with C |
c_longdouble |
long double |
for ABI compatibility with C |
c_void |
void |
for ABI compatibility with C |
f32 |
float |
32-bit floating point (23-bit mantissa) |
f64 |
double |
64-bit floating point (52-bit mantissa) |
f128 |
(none) | 128-bit floating point (112-bit mantissa) |
bool |
bool |
true or false |
void |
(none) | 0 bit type |
noreturn |
(none) | the type of break , continue , goto , return , unreachable , and while (true) {} |
type |
(none) | the type of types |
error |
(none) | an error code |
See also:
Name | Description |
---|---|
true and false |
bool values |
null |
used to set a nullable type to null |
undefined |
used to leave a value unspecified |
this |
refers to the thing in immediate scope |
See also:
const assert = @import("std").debug.assert;
const mem = @import("std").mem;
test "string literals" {
// In Zig a string literal is an array of bytes.
const normal_bytes = "hello";
assert(@typeOf(normal_bytes) == [5]u8);
assert(normal_bytes.len == 5);
assert(normal_bytes[1] == 'e');
assert('e' == '\x65');
assert(mem.eql(u8, "hello", "h\x65llo"));
// A C string literal is a null terminated pointer.
const null_terminated_bytes = c"hello";
assert(@typeOf(null_terminated_bytes) == &const u8);
assert(null_terminated_bytes[5] == 0);
}
$ zig test string_literals.zig
Test 1/1 string literals...OK
See also:
Escape Sequence | Name |
---|---|
\n |
Newline |
\r |
Carriage Return |
\t |
Tab |
\\ |
Backslash |
\' |
Single Quote |
\" |
Double Quote |
\xNN |
hexadecimal 8-bit character code (2 digits) |
\uNNNN |
hexadecimal 16-bit Unicode character code UTF-8 encoded (4 digits) |
\UNNNNNN |
hexadecimal 24-bit Unicode character code UTF-8 encoded (6 digits) |
Note that the maximum valid Unicode point is 0x10ffff
.
Multiline string literals have no escapes and can span across multiple lines.
To start a multiline string literal, use the \\
token. Just like a comment,
the string literal goes until the end of the line. The end of the line is
not included in the string literal.
However, if the next line begins with \\
then a newline is appended and
the string literal continues.
const hello_world_in_c =
\\#include <stdio.h>
\\
\\int main(int argc, char **argv) {
\\ printf("hello world\n");
\\ return 0;
\\}
;
For a multiline C string literal, prepend c
to each \\
:
const c_string_literal =
c\\#include <stdio.h>
c\\
c\\int main(int argc, char **argv) {
c\\ printf("hello world\n");
c\\ return 0;
c\\}
;
In this example the variable c_string_literal
has type &const char
and
has a terminating null byte.
See also:
Use const
to assign a value to an identifier:
const x = 1234;
fn foo() {
// It works at global scope as well as inside functions.
const y = 5678;
// Once assigned, an identifier cannot be changed.
y += 1;
}
test "assignment" {
foo();
}
$ zig test test.zig
test.zig:8:7: error: cannot assign to constant
y += 1;
^
If you need a variable that you can modify, use var
:
const assert = @import("std").debug.assert;
test "var" {
var y: i32 = 5678;
y += 1;
assert(y == 5679);
}
$ zig test test.zig
Test 1/1 assignment...OK
Variables must be initialized:
test "initialization" {
var x: i32;
x = 1;
}
$ zig test test.zig
test.zig:3:5: error: variables must be initialized
var x: i32;
^
Use undefined
to leave variables uninitialized:
const assert = @import("std").debug.assert;
test "init with undefined" {
var x: i32 = undefined;
x = 1;
assert(x == 1);
}
$ zig test test.zig
Test 1/1 init with undefined...OK
const decimal_int = 98222;
const hex_int = 0xff;
const another_hex_int = 0xFF;
const octal_int = 0o755;
const binary_int = 0b11110000;
Integer literals have no size limitation, and if any undefined behavior occurs, the compiler catches it.
However, once an integer value is no longer known at compile-time, it must have a known size, and is vulnerable to undefined behavior.
fn divide(a: i32, b: i32) -> i32 {
return a / b;
}
In this function, values a
and b
are known only at runtime,
and thus this division operation is vulnerable to both integer overflow and
division by zero.
Operators such as +
and -
cause undefined behavior on
integer overflow. Also available are operations such as +%
and
-%
which are defined to have wrapping arithmetic on all targets.
See also:
const floating_point = 123.0E+77;
const another_float = 123.0;
const yet_another = 123.0e+77;
const hex_floating_point = 0x103.70p-5;
const another_hex_float = 0x103.70;
const yet_another_hex_float = 0x103.70P-5;
By default floating point operations use Optimized
mode,
but you can switch to Strict
mode on a per-block basis:
foo.zig
const builtin = @import("builtin");
const big = f64(1 << 40);
export fn foo_strict(x: f64) -> f64 {
@setFloatMode(this, builtin.FloatMode.Strict);
return x + big - big;
}
export fn foo_optimized(x: f64) -> f64 {
return x + big - big;
}
test.zig
const io = @import("std").io;
extern fn foo_strict(x: f64) -> f64;
extern fn foo_optimized(x: f64) -> f64;
pub fn main() -> %void {
const x = 0.001;
%%io.stdout.printf("optimized = {}\n", foo_optimized(x));
%%io.stdout.printf("strict = {}\n", foo_strict(x));
}
For this test we have to separate code into two object files - otherwise the optimizer figures out all the values at compile-time, which operates in strict mode.
$ zig build-obj foo.zig --release-fast
$ zig build-exe test.zig --object foo.o
$ ./test
optimized = 1.0e-2
strict = 9.765625e-3
See also:
Syntax | Relevant Types | Description | Example |
---|---|---|---|
|
Addition.
|
|
|
|
Wrapping Addition.
|
|
|
|
Subtraction.
|
|
|
|
Wrapping Subtraction.
|
|
|
|
Negation.
|
|
|
|
Wrapping Negation.
|
|
|
|
Multiplication.
|
|
|
|
Wrapping Multiplication.
|
|
|
|
Divison.
|
|
|
|
Remainder Division.
|
|
|
|
Bit Shift Left.
|
|
|
|
Bit Shift Right.
|
|
|
|
Bitwise AND. |
|
|
|
Bitwise OR. |
|
|
|
Bitwise XOR. |
|
|
|
Bitwise NOT. |
|
|
|
If a is null ,
returns b ("default value"),
otherwise returns the unwrapped value of a .
Note that b may be a value of type noreturn.
|
|
|
|
Equivalent to:
|
|
|
|
If a is an error ,
returns b ("default value"),
otherwise returns the unwrapped value of a .
Note that b may be a value of type noreturn.
err is the error and is in scope of the expression b .
|
|
|
|
Equivalent to:
|
|
|
|
If a is false , returns false
without evaluating b . Otherwise, retuns b .
|
|
|
|
If a is true , returns true
without evaluating b . Otherwise, retuns b .
|
|
|
|
Boolean NOT. |
|
|
|
Returns true if a and b are equal, otherwise returns false .
|
|
|
|
Returns true if a is null , otherwise returns false .
|
|
|
|
Returns false if a and b are equal, otherwise returns true .
|
|
|
|
Returns true if a is greater than b, otherwise returns false .
|
|
|
|
Returns true if a is greater than or equal to b, otherwise returns false .
|
|
|
|
Returns true if a is less than b, otherwise returns false .
|
|
|
|
Returns true if a is less than or equal to b, otherwise returns false .
|
|
|
|
Array concatenation.
|
|
|
|
Array multiplication.
|
|
|
|
Pointer dereference. |
|
|
|
All types | Address of. |
|
x() x[] x.y
!x -x -%x ~x *x &x ?x %x %%x ??x
x{}
* / % ** *%
+ - ++ +% -%
<< >>
&
^
|
== != < > <= >=
and
or
?? %%
= *= /= %= += -= <<= >>= &= ^= |=
const assert = @import("std").debug.assert;
const mem = @import("std").mem;
// array literal
const message = []u8{'h', 'e', 'l', 'l', 'o'};
// get the size of an array
comptime {
assert(message.len == 5);
}
// a string literal is an array literal
const same_message = "hello";
comptime {
assert(mem.eql(u8, message, same_message));
assert(@typeOf(message) == @typeOf(same_message));
}
test "iterate over an array" {
var sum: usize = 0;
for (message) |byte| {
sum += byte;
}
assert(sum == usize('h') + usize('e') + usize('l') * 2 + usize('o'));
}
// modifiable array
var some_integers: [100]i32 = undefined;
test "modify an array" {
for (some_integers) |*item, i| {
*item = i32(i);
}
assert(some_integers[10] == 10);
assert(some_integers[99] == 99);
}
// array concatenation works if the values are known
// at compile time
const part_one = []i32{1, 2, 3, 4};
const part_two = []i32{5, 6, 7, 8};
const all_of_it = part_one ++ part_two;
comptime {
assert(mem.eql(i32, all_of_it, []i32{1,2,3,4,5,6,7,8}));
}
// remember that string literals are arrays
const hello = "hello";
const world = "world";
const hello_world = hello ++ " " ++ world;
comptime {
assert(mem.eql(u8, hello_world, "hello world"));
}
// ** does repeating patterns
const pattern = "ab" ** 3;
comptime {
assert(mem.eql(u8, pattern, "ababab"));
}
// initialize an array to zero
const all_zero = []u16{0} ** 10;
comptime {
assert(all_zero.len == 10);
assert(all_zero[5] == 0);
}
// use compile-time code to initialize an array
var fancy_array = {
var initial_value: [10]Point = undefined;
for (initial_value) |*pt, i| {
*pt = Point {
.x = i32(i),
.y = i32(i) * 2,
};
}
initial_value
};
const Point = struct {
x: i32,
y: i32,
};
test "compile-time array initalization" {
assert(fancy_array[4].x == 4);
assert(fancy_array[4].y == 8);
}
// call a function to initialize an array
var more_points = []Point{makePoint(3)} ** 10;
fn makePoint(x: i32) -> Point {
Point {
.x = x,
.y = x * 2,
}
}
test "array initialization with function calls" {
assert(more_points[4].x == 3);
assert(more_points[4].y == 6);
assert(more_points.len == 10);
}
$ zig test arrays.zig
Test 1/4 iterate over an array...OK
Test 2/4 modify an array...OK
Test 3/4 compile-time array initalization...OK
Test 4/4 array initialization with function calls...OK
See also:
const assert = @import("std").debug.assert;
test "address of syntax" {
// Get the address of a variable:
const x: i32 = 1234;
const x_ptr = &x;
// Deference a pointer:
assert(*x_ptr == 1234);
// When you get the address of a const variable, you get a const pointer.
assert(@typeOf(x_ptr) == &const i32);
// If you want to mutate the value, you'd need an address of a mutable variable:
var y: i32 = 5678;
const y_ptr = &y;
assert(@typeOf(y_ptr) == &i32);
*y_ptr += 1;
assert(*y_ptr == 5679);
}
test "pointer array access" {
// Pointers do not support pointer arithmetic. If you
// need such a thing, use array index syntax:
var array = []u8{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
const ptr = &array[1];
assert(array[2] == 3);
ptr[1] += 1;
assert(array[2] == 4);
}
test "pointer slicing" {
// In Zig, we prefer using slices over null-terminated pointers.
// You can turn a pointer into a slice using slice syntax:
var array = []u8{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
const ptr = &array[1];
const slice = ptr[1..3];
assert(slice.ptr == &ptr[1]);
assert(slice.len == 2);
// Slices have bounds checking and are therefore protected
// against this kind of undefined behavior. This is one reason
// we prefer slices to pointers.
assert(array[3] == 4);
slice[1] += 1;
assert(array[3] == 5);
}
comptime {
// Pointers work at compile-time too, as long as you don't use
// @ptrCast.
var x: i32 = 1;
const ptr = &x;
*ptr += 1;
x += 1;
assert(*ptr == 3);
}
test "@ptrToInt and @intToPtr" {
// To convert an integer address into a pointer, use @intToPtr:
const ptr = @intToPtr(&i32, 0xdeadbeef);
// To convert a pointer to an integer, use @ptrToInt:
const addr = @ptrToInt(ptr);
assert(@typeOf(addr) == usize);
assert(addr == 0xdeadbeef);
}
comptime {
// Zig is able to do this at compile-time, as long as
// ptr is never dereferenced.
const ptr = @intToPtr(&i32, 0xdeadbeef);
const addr = @ptrToInt(ptr);
assert(@typeOf(addr) == usize);
assert(addr == 0xdeadbeef);
}
test "volatile" {
// In Zig, loads and stores are assumed to not have side effects.
// If a given load or store should have side effects, such as
// Memory Mapped Input/Output (MMIO), use `volatile`:
const mmio_ptr = @intToPtr(&volatile u8, 0x12345678);
// Now loads and stores with mmio_ptr are guaranteed to all happen
// and in the same order as in source code.
assert(@typeOf(mmio_ptr) == &volatile u8);
}
test "nullable pointers" {
// Pointers cannot be null. If you want a null pointer, use the nullable
// prefix `?` to make the pointer type nullable.
var ptr: ?&i32 = null;
var x: i32 = 1;
ptr = &x;
assert(*??ptr == 1);
// Nullable pointers are the same size as normal pointers, because pointer
// value 0 is used as the null value.
assert(@sizeOf(?&i32) == @sizeOf(&i32));
}
test "pointer casting" {
// To convert one pointer type to another, use @ptrCast. This is an unsafe
// operation that Zig cannot protect you against. Use @ptrCast only when other
// conversions are not possible.
const bytes = []u8{0x12, 0x12, 0x12, 0x12};
const u32_ptr = @ptrCast(&const u32, &bytes[0]);
assert(*u32_ptr == 0x12121212);
// Even this example is contrived - there are better ways to do the above than
// pointer casting. For example, using a slice narrowing cast:
const u32_value = ([]const u32)(bytes[0..])[0];
assert(u32_value == 0x12121212);
// And even another way, the most straightforward way to do it:
assert(@bitCast(u32, bytes) == 0x12121212);
}
test "pointer child type" {
// pointer types have a `child` field which tells you the type they point to.
assert((&u32).child == u32);
}
$ zig test test.zig
Test 1/8 address of syntax...OK
Test 2/8 pointer array access...OK
Test 3/8 pointer slicing...OK
Test 4/8 @ptrToInt and @intToPtr...OK
Test 5/8 volatile...OK
Test 6/8 nullable pointers...OK
Test 7/8 pointer casting...OK
Test 8/8 pointer child type...OK
Each type has an alignment - a number of bytes such that, when a value of the type is loaded from or stored to memory, the memory address must be evenly divisible by this number. You can use @alignOf to find out this value for any type.
Alignment depends on the CPU architecture, but is always a power of two, and
less than 1 << 29
.
In Zig, a pointer type has an alignment value. If the value is equal to the alignment of the underlying type, it can be omitted from the type:
const assert = @import("std").debug.assert;
const builtin = @import("builtin");
test "variable alignment" {
var x: i32 = 1234;
const align_of_i32 = @alignOf(@typeOf(x));
assert(@typeOf(&x) == &i32);
assert(&i32 == &align(align_of_i32) i32);
if (builtin.arch == builtin.Arch.x86_64) {
assert((&i32).alignment == 4);
}
}
In the same way that a &i32
can be implicitly cast to a
&const i32
, a pointer with a larger alignment can be implicitly
cast to a pointer with a smaller alignment, but not vice versa.
You can specify alignment on variables and functions. If you do this, then pointers to them get the specified alignment:
const assert = @import("std").debug.assert;
var foo: u8 align(4) = 100;
test "global variable alignment" {
assert(@typeOf(&foo).alignment == 4);
assert(@typeOf(&foo) == &align(4) u8);
const slice = (&foo)[0..1];
assert(@typeOf(slice) == []align(4) u8);
}
fn derp() align(@sizeOf(usize) * 2) -> i32 { 1234 }
fn noop1() align(1) {}
fn noop4() align(4) {}
test "function alignment" {
assert(derp() == 1234);
assert(@typeOf(noop1) == fn() align(1));
assert(@typeOf(noop4) == fn() align(4));
noop1();
noop4();
}
If you have a pointer or a slice that has a small alignment, but you know that it actually has a bigger alignment, use @alignCast to change the pointer into a more aligned pointer. This is a no-op at runtime, but inserts a safety check:
const assert = @import("std").debug.assert;
test "pointer alignment safety" {
var array align(4) = []u32{0x11111111, 0x11111111};
const bytes = ([]u8)(array[0..]);
assert(foo(bytes) == 0x11111111);
}
fn foo(bytes: []u8) -> u32 {
const slice4 = bytes[1..5];
const int_slice = ([]u32)(@alignCast(4, slice4));
return int_slice[0];
}
$ zig test test.zig
Test 1/1 pointer alignment safety...incorrect alignment
/home/andy/dev/zig/build/lib/zig/std/special/zigrt.zig:16:35: 0x0000000000203525 in ??? (test)
@import("std").debug.panic("{}", message_ptr[0..message_len]);
^
/home/andy/dev/zig/build/test.zig:10:45: 0x00000000002035ec in ??? (test)
const int_slice = ([]u32)(@alignCast(4, slice4));
^
/home/andy/dev/zig/build/test.zig:6:15: 0x0000000000203439 in ??? (test)
assert(foo(bytes) == 0x11111111);
^
/home/andy/dev/zig/build/lib/zig/std/special/test_runner.zig:9:21: 0x00000000002162d8 in ??? (test)
test_fn.func();
^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:60:21: 0x0000000000216197 in ??? (test)
return root.main();
^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:47:13: 0x0000000000216050 in ??? (test)
callMain(argc, argv, envp) %% std.os.posix.exit(1);
^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:34:25: 0x0000000000215fa0 in ??? (test)
posixCallMainAndExit()
^
Tests failed. Use the following command to reproduce the failure:
./test
Zig uses Type Based Alias Analysis (also known as Strict Aliasing) to
perform some optimizations. This means that pointers of different types must
not alias the same memory, with the exception of u8
. Pointers to
u8
can alias any memory.
As an example, this code produces undefined behavior:
*@ptrCast(&u32, f32(12.34))
Instead, use @bitCast:
@bitCast(u32, f32(12.34))
As an added benefit, the @bitcast
version works at compile-time.
See also:
const assert = @import("std").debug.assert;
test "basic slices" {
var array = []i32{1, 2, 3, 4};
// A slice is a pointer and a length. The difference between an array and
// a slice is that the array's length is part of the type and known at
// compile-time, whereas the slice's length is known at runtime.
// Both can be accessed with the `len` field.
const slice = array[0..array.len];
assert(slice.ptr == &array[0]);
assert(slice.len == array.len);
// Slices have array bounds checking. If you try to access something out
// of bounds, you'll get a safety check failure:
slice[10] += 1;
}
$ zig test test.zig
Test 1/1 basic slices...index out of bounds
lib/zig/std/special/zigrt.zig:16:35: 0x0000000000203455 in ??? (test)
@import("std").debug.panic("{}", message_ptr[0..message_len]);
^
test.zig:15:10: 0x0000000000203334 in ??? (test)
slice[10] += 1;
^
lib/zig/std/special/test_runner.zig:9:21: 0x0000000000214b1a in ??? (test)
test_fn.func();
^
lib/zig/std/special/bootstrap.zig:60:21: 0x00000000002149e7 in ??? (test)
return root.main();
^
lib/zig/std/special/bootstrap.zig:47:13: 0x00000000002148a0 in ??? (test)
callMain(argc, argv, envp) %% std.os.posix.exit(1);
^
lib/zig/std/special/bootstrap.zig:34:25: 0x00000000002147f0 in ??? (test)
posixCallMainAndExit()
^
Tests failed. Use the following command to reproduce the failure:
./test
This is one reason we prefer slices to pointers.
const assert = @import("std").debug.assert;
const mem = @import("std").mem;
const fmt = @import("std").fmt;
test "using slices for strings" {
// Zig has no concept of strings. String literals are arrays of u8, and
// in general the string type is []u8 (slice of u8).
// Here we implicitly cast [5]u8 to []const u8
const hello: []const u8 = "hello";
const world: []const u8 = "世界";
var all_together: [100]u8 = undefined;
// You can use slice syntax on an array to convert an array into a slice.
const all_together_slice = all_together[0..];
// String concatenation example:
const hello_world = fmt.bufPrint(all_together_slice, "{} {}", hello, world);
// Generally, you can use UTF-8 and not worry about whether something is a
// string. If you don't need to deal with individual characters, no need
// to decode.
assert(mem.eql(u8, hello_world, "hello 世界"));
}
test "slice pointer" {
var array: [10]u8 = undefined;
const ptr = &array[0];
// You can use slicing syntax to convert a pointer into a slice:
const slice = ptr[0..5];
slice[2] = 3;
assert(slice[2] == 3);
// The slice is mutable because we sliced a mutable pointer.
assert(@typeOf(slice) == []u8);
// You can also slice a slice:
const slice2 = slice[2..3];
assert(slice2.len == 1);
assert(slice2[0] == 3);
}
test "slice widening" {
// Zig supports slice widening and slice narrowing. Cast a slice of u8
// to a slice of anything else, and Zig will perform the length conversion.
const array = []u8{0x12, 0x12, 0x12, 0x12, 0x13, 0x13, 0x13, 0x13};
const slice = ([]const u32)(array[0..]);
assert(slice.len == 2);
assert(slice[0] == 0x12121212);
assert(slice[1] == 0x13131313);
}
$ zig test test.zig
Test 1/3 using slices for strings...OK
Test 2/3 slice pointer...OK
Test 3/3 slice widening...OK
See also:
// Declare a struct.
// Zig gives no guarantees about the order of fields and whether or
// not there will be padding.
const Point = struct {
x: f32,
y: f32,
};
// Maybe we want to pass it to OpenGL so we want to be particular about
// how the bytes are arranged.
const Point2 = packed struct {
x: f32,
y: f32,
};
// Declare an instance of a struct.
const p = Point {
.x = 0.12,
.y = 0.34,
};
// Maybe we're not ready to fill out some of the fields.
var p2 = Point {
.x = 0.12,
.y = undefined,
};
// Structs can have methods
// Struct methods are not special, they are only namespaced
// functions that you can call with dot syntax.
const Vec3 = struct {
x: f32,
y: f32,
z: f32,
pub fn init(x: f32, y: f32, z: f32) -> Vec3 {
return Vec3 {
.x = x,
.y = y,
.z = z,
};
}
pub fn dot(self: &const Vec3, other: &const Vec3) -> f32 {
return self.x * other.x + self.y * other.y + self.z * other.z;
}
};
const assert = @import("std").debug.assert;
test "dot product" {
const v1 = Vec3.init(1.0, 0.0, 0.0);
const v2 = Vec3.init(0.0, 1.0, 0.0);
assert(v1.dot(v2) == 0.0);
// Other than being available to call with dot syntax, struct methods are
// not special. You can reference them as any other declaration inside
// the struct:
assert(Vec3.dot(v1, v2) == 0.0);
}
// Structs can have global declarations.
// Structs can have 0 fields.
const Empty = struct {
pub const PI = 3.14;
};
test "struct namespaced variable" {
assert(Empty.PI == 3.14);
assert(@sizeOf(Empty) == 0);
// you can still instantiate an empty struct
const does_nothing = Empty {};
}
// struct field order is determined by the compiler for optimal performance.
// however, you can still calculate a struct base pointer given a field pointer:
fn setYBasedOnX(x: &f32, y: f32) {
const point = @fieldParentPtr(Point, "x", x);
point.y = y;
}
test "field parent pointer" {
var point = Point {
.x = 0.1234,
.y = 0.5678,
};
setYBasedOnX(&point.x, 0.9);
assert(point.y == 0.9);
}
// You can return a struct from a function. This is how we do generics
// in Zig:
fn LinkedList(comptime T: type) -> type {
return struct {
pub const Node = struct {
prev: ?&Node,
next: ?&Node,
data: T,
};
first: ?&Node,
last: ?&Node,
len: usize,
};
}
test "linked list" {
// Functions called at compile-time are memoized. This means you can
// do this:
assert(LinkedList(i32) == LinkedList(i32));
var list = LinkedList(i32) {
.first = null,
.last = null,
.len = 0,
};
assert(list.len == 0);
// Since types are first class values you can instantiate the type
// by assigning it to a variable:
const ListOfInts = LinkedList(i32);
assert(ListOfInts == LinkedList(i32));
var node = ListOfInts.Node {
.prev = null,
.next = null,
.data = 1234,
};
var list2 = LinkedList(i32) {
.first = &node,
.last = &node,
.len = 1,
};
assert((??list2.first).data == 1234);
}
$ zig test structs.zig
Test 1/4 dot product...OK
Test 2/4 struct namespaced variable...OK
Test 3/4 field parent pointer...OK
Test 4/4 linked list...OK
See also:
const assert = @import("std").debug.assert;
const mem = @import("std").mem;
// Declare an enum.
const Type = enum {
Ok,
NotOk,
};
// Enums are sum types, and can hold more complex data of different types.
const ComplexType = enum {
Ok: u8,
NotOk: void,
};
// Declare a specific instance of the enum variant.
const c = ComplexType.Ok { 0 };
// The ordinal value of a simple enum with no data members can be
// retrieved by a simple cast.
// The value starts from 0, counting up for each member.
const Value = enum {
Zero,
One,
Two,
};
test "enum ordinal value" {
assert(usize(Value.Zero) == 0);
assert(usize(Value.One) == 1);
assert(usize(Value.Two) == 2);
}
// Enums can have methods, the same as structs.
// Enum methods are not special, they are only namespaced
// functions that you can call with dot syntax.
const Suit = enum {
Clubs,
Spades,
Diamonds,
Hearts,
pub fn ordinal(self: &const Suit) -> u8 {
u8(*self)
}
};
test "enum method" {
const p = Suit.Spades;
assert(p.ordinal() == 1);
}
// An enum variant of different types can be switched upon.
// The associated data can be retrieved using `|...|` syntax.
//
// A void type is not required on a tag-only member.
const Foo = enum {
String: []const u8,
Number: u64,
None,
};
test "enum variant switch" {
const p = Foo.Number { 54 };
const what_is_it = switch (p) {
// Capture by reference
Foo.String => |*x| {
"this is a string"
},
// Capture by value
Foo.Number => |x| {
"this is a number"
},
Foo.None => {
"this is a none"
}
};
}
// The @enumTagName and @memberCount builtin functions can be used to
// the string representation and number of members respectively.
const BuiltinType = enum {
A: f32,
B: u32,
C,
};
test "enum builtins" {
assert(mem.eql(u8, @enumTagName(BuiltinType.A { 0 }), "A"));
assert(mem.eql(u8, @enumTagName(BuiltinType.C), "C"));
assert(@memberCount(BuiltinType) == 3);
}
$ zig test enum.zig
Test 1/4 enum ordinal value...OK
Test 2/4 enum method...OK
Test 3/4 enum variant switch...OK
Test 4/4 enum builtins...OK
Enums are generated as a struct with a tag field and union field. Zig sorts the order of the tag and union field by the largest alignment.
See also:
const assert = @import("std").debug.assert;
const builtin = @import("builtin");
test "switch simple" {
const a: u64 = 10;
const zz: u64 = 103;
// All branches of a switch expression must be able to be coerced to a
// common type.
//
// Branches cannot fallthrough. If fallthrough behavior is desired, combine
// the cases and use an if.
const b = switch (a) {
// Multiple cases can be combined via a ','
1, 2, 3 => 0,
// Ranges can be specified using the ... syntax. These are inclusive
// both ends.
5 ... 100 => 1,
// Branches can be arbitrarily complex.
101 => {
const c: u64 = 5;
c * 2 + 1
},
// Switching on arbitrary expressions is allowed as long as the
// expression is known at compile-time.
zz => zz,
comptime {
const d: u32 = 5;
const e: u32 = 100;
d + e
} => 107,
// The else branch catches everything not already captured.
// Else branches are mandatory unless the entire range of values
// is handled.
else => 9,
};
assert(b == 1);
}
test "switch enum" {
const Item = enum {
A: u32,
C: struct { x: u8, y: u8 },
D,
};
var a = Item.A { 3 };
// Switching on more complex enums is allowed.
const b = switch (a) {
// A capture group is allowed on a match, and will return the enum
// value matched.
Item.A => |item| item,
// A reference to the matched value can be obtained using `*` syntax.
Item.C => |*item| {
(*item).x += 1;
6
},
// No else is required if the types cases was exhaustively handled
Item.D => 8,
};
assert(b == 3);
}
// Switch expressions can be used outside a function:
const os_msg = switch (builtin.os) {
builtin.Os.linux => "we found a linux user",
else => "not a linux user",
};
// Inside a function, switch statements implicitly are compile-time
// evaluated if the target expression is compile-time known.
test "switch inside function" {
switch (builtin.os) {
builtin.Os.windows => {
// On an OS other than windows, block is not even analyzed,
// so this compile error is not triggered.
// On windows this compile error would be triggered.
@compileError("windows not supported");
},
else => {},
};
}
$ zig test switch.zig
Test 1/2 switch simple...OK
Test 2/2 switch enum...OK
Test 3/3 switch inside function...OK
See also:
const assert = @import("std").debug.assert;
test "while basic" {
// A while loop is used to repeatedly execute an expression until
// some condition is no longer true.
var i: usize = 0;
while (i < 10) {
i += 1;
}
assert(i == 10);
}
test "while break" {
// You can use break to exit a while loop early.
var i: usize = 0;
while (true) {
if (i == 10)
break;
i += 1;
}
assert(i == 10);
}
test "while continue" {
// You can use continue to jump back to the beginning of the loop.
var i: usize = 0;
while (true) {
i += 1;
if (i < 10)
continue;
break;
}
assert(i == 10);
}
test "while loop continuation expression" {
// You can give an expression to the while loop to execute when
// the loop is continued. This is respected by the continue control flow.
var i: usize = 0;
while (i < 10) : (i += 1) {}
assert(i == 10);
}
test "while loop continuation expression, more complicated" {
// More complex blocks can be used as an expression in the loop continue
// expression.
var i1: usize = 1;
var j1: usize = 1;
while (i1 * j1 < 2000) : ({ i1 *= 2; j1 *= 3; }) {
const my_ij1 = i1 * j1;
assert(my_ij1 < 2000);
}
}
test "while else" {
assert(rangeHasNumber(0, 10, 5));
assert(!rangeHasNumber(0, 10, 15));
}
fn rangeHasNumber(begin: usize, end: usize, number: usize) -> bool {
var i = begin;
// While loops are expressions. The result of the expression is the
// result of the else clause of a while loop, which is executed when
// the condition of the while loop is tested as false.
return while (i < end) : (i += 1) {
if (i == number) {
// break expressions, like return expressions, accept a value
// parameter. This is the result of the while expression.
// When you break from a while loop, the else branch is not
// evaluated.
break true;
}
} else {
false
}
}
test "while null capture" {
// Just like if expressions, while loops can take a nullable as the
// condition and capture the payload. When null is encountered the loop
// exits.
var sum1: u32 = 0;
numbers_left = 3;
while (eventuallyNullSequence()) |value| {
sum1 += value;
}
assert(sum1 == 3);
// The else branch is allowed on nullable iteration. In this case, it will
// be executed on the first null value encountered.
var sum2: u32 = 0;
numbers_left = 3;
while (eventuallyNullSequence()) |value| {
sum2 += value;
} else {
assert(sum1 == 3);
}
// Just like if expressions, while loops can also take an error union as
// the condition and capture the payload or the error code. When the
// condition results in an error code the else branch is evaluated and
// the loop is finished.
var sum3: u32 = 0;
numbers_left = 3;
while (eventuallyErrorSequence()) |value| {
sum3 += value;
} else |err| {
assert(err == error.ReachedZero);
}
}
var numbers_left: u32 = undefined;
fn eventuallyNullSequence() -> ?u32 {
return if (numbers_left == 0) {
null
} else {
numbers_left -= 1;
numbers_left
}
}
error ReachedZero;
fn eventuallyErrorSequence() -> %u32 {
return if (numbers_left == 0) {
error.ReachedZero
} else {
numbers_left -= 1;
numbers_left
}
}
test "inline while loop" {
// While loops can be inlined. This causes the loop to be unrolled, which
// allows the code to do some things which only work at compile time,
// such as use types as first class values.
comptime var i = 0;
var sum: usize = 0;
inline while (i < 3) : (i += 1) {
const T = switch (i) {
0 => f32,
1 => i8,
2 => bool,
else => unreachable,
};
sum += typeNameLength(T);
}
assert(sum == 9);
}
fn typeNameLength(comptime T: type) -> usize {
return @typeName(T).len;
}
$ zig while.zig
Test 1/8 while basic...OK
Test 2/8 while break...OK
Test 3/8 while continue...OK
Test 4/8 while loop continuation expression...OK
Test 5/8 while loop continuation expression, more complicated...OK
Test 6/8 while else...OK
Test 7/8 while null capture...OK
Test 8/8 inline while loop...OK
See also:
const assert = @import("std").debug.assert;
test "for basics" {
const items = []i32 { 4, 5, 3, 4, 0 };
var sum: i32 = 0;
// For loops iterate over slices and arrays.
for (items) |value| {
// Break and continue are supported.
if (value == 0) {
continue;
}
sum += value;
}
assert(sum == 16);
// To iterate over a portion of a slice, reslice.
for (items[0..1]) |value| {
sum += value;
}
assert(sum == 20);
// To access the index of iteration, specify a second capture value.
// This is zero-indexed.
var sum2: i32 = 0;
for (items) |value, i| {
assert(@typeOf(i) == usize);
sum2 += i32(i);
}
assert(sum2 == 10);
}
test "for reference" {
var items = []i32 { 3, 4, 2 };
// Iterate over the slice by reference by
// specifying that the capture value is a pointer.
for (items) |*value| {
*value += 1;
}
assert(items[0] == 4);
assert(items[1] == 5);
assert(items[2] == 3);
}
test "for else" {
// For allows an else attached to it, the same as a while loop.
var items = []?i32 { 3, 4, null, 5 };
// For loops can also be used as expressions.
var sum: i32 = 0;
const result = for (items) |value| {
if (value == null) {
break 9;
} else {
sum += ??value;
}
} else {
assert(sum == 7);
sum
};
}
test "inline for loop" {
const nums = []i32{2, 4, 6};
// For loops can be inlined. This causes the loop to be unrolled, which
// allows the code to do some things which only work at compile time,
// such as use types as first class values.
// The capture value and iterator value of inlined for loops are
// compile-time known.
var sum: usize = 0;
inline for (nums) |i| {
const T = switch (i) {
2 => f32,
4 => i8,
6 => bool,
else => unreachable,
};
sum += typeNameLength(T);
}
assert(sum == 9);
}
fn typeNameLength(comptime T: type) -> usize {
return @typeName(T).len;
}
$ zig test for.zig
Test 1/4 for basics...OK
Test 2/4 for reference...OK
Test 3/4 for else...OK
Test 4/4 inline for loop...OK
See also:
// If expressions have three uses, corresponding to the three types:
// * bool
// * ?T
// * %T
const assert = @import("std").debug.assert;
test "if boolean" {
// If expressions test boolean conditions.
const a: u32 = 5;
const b: u32 = 4;
if (a != b) {
assert(true);
} else if (a == 9) {
unreachable
} else {
unreachable
}
// If expressions are used instead of a ternary expression.
const result = if (a != b) 47 else 3089;
assert(result == 47);
}
test "if nullable" {
// If expressions test for null.
const a: ?u32 = 0;
if (a) |value| {
assert(value == 0);
} else {
unreachable;
}
const b: ?u32 = null;
if (b) |value| {
unreachable;
} else {
assert(true);
}
// The else is not required.
if (a) |value| {
assert(value == 0);
}
// To test against null only, use the binary equality operator.
if (b == null) {
assert(true);
}
// Access the value by reference using a pointer capture.
var c: ?u32 = 3;
if (c) |*value| {
*value = 2;
}
if (c) |value| {
assert(value == 2);
} else {
unreachable;
}
}
error BadValue;
error LessBadValue;
test "if error union" {
// If expressions test for errors.
// Note the |err| capture on the else.
const a: %u32 = 0;
if (a) |value| {
assert(value == 0);
} else |err| {
unreachable
}
const b: %u32 = error.BadValue;
if (b) |value| {
unreachable
} else |err| {
assert(err == error.BadValue);
}
// The else and |err| capture is strictly required.
if (a) |value| {
assert(value == 0);
} else |_| {}
// To check only the error value, use an empty block expression.
if (b) |_| {} else |err| {
assert(err == error.BadValue);
}
// Access the value by reference using a pointer capture.
var c: %u32 = 3;
if (c) |*value| {
*value = 9;
} else |err| {
unreachable
}
if (c) |value| {
assert(value == 9);
} else |err| {
unreachable
}
}
$ zig test if.zig
Test 1/3 if boolean...OK
Test 2/3 if nullable...OK
Test 3/3 if error union...OK
See also:
const assert = @import("std").debug.assert;
test "goto" {
var value = false;
goto label;
value = true;
label:
assert(value == false);
}
$ zig test goto.zig
Test 1/1 goto...OK
Note that there are plans to remove goto
const assert = @import("std").debug.assert;
const printf = @import("std").io.stdout.printf;
// defer will execute an expression at the end of the current scope.
fn deferExample() -> usize {
var a: usize = 1;
{
defer a = 2;
a = 1;
}
assert(a == 2);
a = 5;
a
}
test "defer basics" {
assert(deferExample() == 5);
}
// If multiple defer statements are specified, they will be executed in
// the reverse order they were run.
fn deferUnwindExample() {
%%printf("\n");
defer {
%%printf("1 ");
}
defer {
%%printf("2 ");
}
if (false) {
// defers are not run if they are never executed.
defer {
%%printf("3 ");
}
}
}
test "defer unwinding" {
deferUnwindExample()
}
// The %defer keyword is similar to defer, but will only execute if the
// scope returns with an error.
//
// This is especially useful in allowing a function to clean up properly
// on error, and replaces goto error handling tactics as seen in c.
error DeferError;
fn deferErrorExample(is_error: bool) -> %void {
%%printf("\nstart of function\n");
// This will always be executed on exit
defer {
%%printf("end of function\n");
}
%defer {
%%printf("encountered an error!\n");
}
if (is_error) {
return error.DeferError;
}
}
test "%defer unwinding" {
_ = deferErrorExample(false);
_ = deferErrorExample(true);
}
$ zig test defer.zig
Test 1/3 defer basics...OK
Test 2/3 defer unwinding...
2 1 OK
Test 3/3 %defer unwinding...
start of function
end of function
start of function
encountered an error!
end of function
OK
See also:
In Debug
and ReleaseSafe
mode, and when using zig test
,
unreachable
emits a call to panic
with the message reached unreachable code
.
In ReleaseFast
mode, the optimizer uses the assumption that unreachable
code
will never be hit to perform optimizations. However, zig test
even in ReleaseFast
mode
still emits unreachable
as calls to panic
.
// unreachable is used to assert that control flow will never happen upon a
// particular location:
test "basic math" {
const x = 1;
const y = 2;
if (x + y != 3) {
unreachable;
}
}
// in fact, this is how assert is implemented:
fn assert(ok: bool) {
if (!ok) unreachable; // assertion failure
}
// This test will fail because we hit unreachable.
test "this will fail" {
assert(false);
}
$ zig test test.zig
Test 1/2 basic math...OK
Test 2/2 this will fail...reached unreachable code
test.zig:13:14: 0x00000000002033ac in ??? (test)
if (!ok) unreachable; // assertion failure
^
test.zig:18:11: 0x000000000020329b in ??? (test)
assert(false);
^
lib/zig/std/special/test_runner.zig:9:21: 0x0000000000214a7a in ??? (test)
test_fn.func();
^
lib/zig/std/special/bootstrap.zig:60:21: 0x0000000000214947 in ??? (test)
return root.main();
^
lib/zig/std/special/bootstrap.zig:47:13: 0x0000000000214800 in ??? (test)
callMain(argc, argv, envp) %% std.os.posix.exit(1);
^
lib/zig/std/special/bootstrap.zig:34:25: 0x0000000000214750 in ??? (test)
posixCallMainAndExit()
^
Tests failed. Use the following command to reproduce the failure:
./test
const assert = @import("std").debug.assert;
comptime {
// The type of unreachable is noreturn.
// However this assertion will still fail because
// evaluating unreachable at compile-time is a compile error.
assert(@typeOf(unreachable) == noreturn);
}
$ zig build-obj test.zig
test.zig:9:12: error: unreachable code
assert(@typeOf(unreachable) == noreturn);
^
See also:
noreturn
is the type of:
break
continue
goto
return
unreachable
while (true) {}
When resolving types together, such as if
clauses or switch
prongs,
the noreturn
type is compatible with every other type. Consider:
fn foo(condition: bool, b: u32) {
const a = if (condition) b else return;
bar(a);
}
extern fn bar(value: u32);
Another use case for noreturn
is the exit
function:
pub extern "kernel32" stdcallcc fn ExitProcess(exit_code: c_uint) -> noreturn;
fn foo() {
const value = bar() %% ExitProcess(1);
assert(value == 1234);
}
fn bar() -> %u32 {
return 1234;
}
const assert = @import("std").debug.assert;
const assert = @import("std").debug.assert;
// Functions are declared like this
// The last expression in the function can be used as the return value.
fn add(a: i8, b: i8) -> i8 {
if (a == 0) {
// You can still return manually if needed.
return b;
}
a + b
}
// The export specifier makes a function externally visible in the generated
// object file, and makes it use the C ABI.
export fn sub(a: i8, b: i8) -> i8 { a - b }
// The extern specifier is used to declare a function that will be resolved
// at link time, when linking statically, or at runtime, when linking
// dynamically.
// The stdcallcc specifier changes the calling convention of the function.
extern "kernel32" stdcallcc fn ExitProcess(exit_code: u32) -> noreturn;
extern "c" fn atan2(a: f64, b: f64) -> f64;
// coldcc makes a function use the cold calling convention.
coldcc fn abort() -> noreturn {
while (true) {}
}
// nakedcc makes a function not have any function prologue or epilogue.
// This can be useful when integrating with assembly.
nakedcc fn _start() -> noreturn {
abort();
}
// The pub specifier allows the function to be visible when importing.
// Another file can use @import and call sub2
pub fn sub2(a: i8, b: i8) -> i8 { a - b }
// Functions can be used as values and are equivalent to pointers.
const call2_op = fn (a: i8, b: i8) -> i8;
fn do_op(fn_call: call2_op, op1: i8, op2: i8) -> i8 {
fn_call(op1, op2)
}
test "function" {
assert(do_op(add, 5, 6) == 11);
assert(do_op(sub2, 5, 6) == -1);
}
$ zig test function.zig
Test 1/1 function...OK
Function values are like pointers:
const assert = @import("std").debug.assert;
comptime {
assert(@typeOf(foo) == fn());
assert(@sizeOf(fn()) == @sizeOf(?fn()));
}
fn foo() { }
$ zig build-obj test.zig
In Zig, structs, unions, and enums with payloads cannot be passed by value to a function.
const Foo = struct {
x: i32,
};
fn bar(foo: Foo) {}
export fn entry() {
bar(Foo {.x = 12,});
}
$ ./zig build-obj test.zig
/home/andy/dev/zig/build/test.zig:5:13: error: type 'Foo' is not copyable; cannot pass by value
fn bar(foo: Foo) {}
^
Instead, one must use &const
. Zig allows implicitly casting something
to a const pointer to it:
const Foo = struct {
x: i32,
};
fn bar(foo: &const Foo) {}
export fn entry() {
bar(Foo {.x = 12,});
}
However, the C ABI does allow passing structs and unions by value. So functions which use the C calling convention may pass structs and unions by value.
One of the distinguishing features of Zig is its exception handling strategy.
Among the top level declarations available is the error value declaration:
error FileNotFound;
error OutOfMemory;
error UnexpectedToken;
These error values are assigned an unsigned integer value greater than 0 at compile time. You are allowed to declare the same error value more than once, and if you do, it gets assigned the same integer value.
You can refer to these error values with the error namespace such as
error.FileNotFound
.
Each error value across the entire compilation unit gets a unique integer, and this determines the size of the pure error type.
The pure error type is one of the error values, and in the same way that pointers cannot be null, a pure error is always an error.
const pure_error = error.FileNotFound;
Most of the time you will not find yourself using a pure error type. Instead,
likely you will be using the error union type. This is when you take a normal type,
and prefix it with the %
operator.
Here is a function to parse a string into a 64-bit integer:
error InvalidChar;
error Overflow;
pub fn parseU64(buf: []const u8, radix: u8) -> %u64 {
var x: u64 = 0;
for (buf) |c| {
const digit = charToDigit(c);
if (digit >= radix) {
return error.InvalidChar;
}
// x *= radix
if (@mulWithOverflow(u64, x, radix, &x)) {
return error.Overflow;
}
// x += digit
if (@addWithOverflow(u64, x, digit, &x)) {
return error.Overflow;
}
}
return x;
}
Notice the return type is %u64
. This means that the function
either returns an unsigned 64 bit integer, or an error.
Within the function definition, you can see some return statements that return
a pure error, and at the bottom a return statement that returns a u64
.
Both types implicitly cast to %u64
.
What it looks like to use this function varies depending on what you're trying to do. One of the following:
If you want to provide a default value, you can use the %%
binary operator:
fn doAThing(str: []u8) {
const number = parseU64(str, 10) %% 13;
// ...
}
In this code, number
will be equal to the successfully parsed string, or
a default value of 13. The type of the right hand side of the binary %%
operator must
match the unwrapped error union type, or be of type noreturn
.
Let's say you wanted to return the error if you got one, otherwise continue with the function logic:
fn doAThing(str: []u8) -> %void {
const number = parseU64(str, 10) %% |err| return err;
// ...
}
There is a shortcut for this. The %return
expression:
fn doAThing(str: []u8) -> %void {
const number = %return parseU64(str, 10);
// ...
}
%return
evaluates an error union expression. If it is an error, it returns
from the current function with the same error. Otherwise, the expression results in
the unwrapped value.
Maybe you know with complete certainty that an expression will never be an error. In this case you can do this:
const number = parseU64("1234", 10) %% unreachable;
Here we know for sure that "1234" will parse successfully. So we put the
unreachable
value on the right hand side. unreachable
generates
a panic in Debug and ReleaseSafe modes and undefined behavior in ReleaseFast mode. So, while we're debugging the
application, if there was a surprise error here, the application would crash
appropriately.
Again there is a syntactic shortcut for this:
const number = %%parseU64("1234", 10);
The %%
prefix operator is equivalent to expression %% |err| return err
. It unwraps an error union type,
and panics in debug mode if the value was an error.
Finally, you may want to take a different action for every situation. For that, we combine
the if
and switch
expression:
fn doAThing(str: []u8) {
if (parseU64(str, 10)) |number| {
doSomethingWithNumber(number);
} else |err| switch (err) {
error.Overflow => {
// handle overflow...
},
// we promise that InvalidChar won't happen (or crash in debug mode if it does)
error.InvalidChar => unreachable,
}
}
The other component to error handling is defer statements.
In addition to an unconditional defer
, Zig has %defer
,
which evaluates the deferred expression on block exit path if and only if
the function returned with an error from the block.
Example:
fn createFoo(param: i32) -> %Foo {
const foo = %return tryToAllocateFoo();
// now we have allocated foo. we need to free it if the function fails.
// but we want to return it if the function succeeds.
%defer deallocateFoo(foo);
const tmp_buf = allocateTmpBuffer() ?? return error.OutOfMemory;
// tmp_buf is truly a temporary resource, and we for sure want to clean it up
// before this block leaves scope
defer deallocateTmpBuffer(tmp_buf);
if (param > 1337) return error.InvalidParam;
// here the %defer will not run since we're returning success from the function.
// but the defer will run!
return foo;
}
The neat thing about this is that you get robust error handling without the verbosity and cognitive overhead of trying to make sure every exit path is covered. The deallocation code is always directly following the allocation code.
A couple of other tidbits about error handling:
%%
prefix operator and
get the added benefit of crashing in Debug and ReleaseSafe modes if your assumption was wrong.
See also:
One area that Zig provides safety without compromising efficiency or readability is with the nullable type.
The question mark symbolizes the nullable type. You can convert a type to a nullable type by putting a question mark in front of it, like this:
// normal integer
const normal_int: i32 = 1234;
// nullable integer
const nullable_int: ?i32 = 5678;
Now the variable nullable_int
could be an i32
, or null
.
Instead of integers, let's talk about pointers. Null references are the source of many runtime exceptions, and even stand accused of being the worst mistake of computer science.
Zig does not have them.
Instead, you can use a nullable pointer. This secretly compiles down to a normal pointer, since we know we can use 0 as the null value for the nullable type. But the compiler can check your work and make sure you don't assign null to something that can't be null.
Typically the downside of not having null is that it makes the code more verbose to write. But, let's compare some equivalent C code and Zig code.
Task: call malloc, if the result is null, return null.
C code
// malloc prototype included for reference
void *malloc(size_t size);
struct Foo *do_a_thing(void) {
char *ptr = malloc(1234);
if (!ptr) return NULL;
// ...
}
Zig code
// malloc prototype included for reference
extern fn malloc(size: size_t) -> ?&u8;
fn doAThing() -> ?&Foo {
const ptr = malloc(1234) ?? return null;
// ...
}
Here, Zig is at least as convenient, if not more, than C. And, the type of "ptr"
is &u8
not ?&u8
. The ??
operator
unwrapped the nullable type and therefore ptr
is guaranteed to be non-null everywhere
it is used in the function.
The other form of checking against NULL you might see looks like this:
void do_a_thing(struct Foo *foo) {
// do some stuff
if (foo) {
do_something_with_foo(foo);
}
// do some stuff
}
In Zig you can accomplish the same thing:
fn doAThing(nullable_foo: ?&Foo) {
// do some stuff
if (const foo ?= nullable_foo) {
doSomethingWithFoo(foo);
}
// do some stuff
}
Once again, the notable thing here is that inside the if block,
foo
is no longer a nullable pointer, it is a pointer, which
cannot be null.
One benefit to this is that functions which take pointers as arguments can
be annotated with the "nonnull" attribute - __attribute__((nonnull))
in
GCC.
The optimizer can sometimes make better decisions knowing that pointer arguments
cannot be null.
TODO: explain implicit vs explicit casting
TODO: resolve peer types builtin
TODO: truncate builtin
TODO: bitcast builtin
TODO: int to ptr builtin
TODO: ptr to int builtin
TODO: ptrcast builtin
TODO: explain number literals vs concrete types
TODO: assigning void has no codegen
TODO: hashmap with void becomes a set
TODO: difference between c_void and void
TODO: void is the default return value of functions
TODO: functions require assigning the return value
TODO: example of this referring to Self struct
TODO: example of this referring to recursion function
TODO: example of this referring to basic block for @setDebugSafety
Zig places importance on the concept of whether an expression is known at compile-time. There are a few different places this concept is used, and these building blocks are used to keep the language small, readable, and powerful.
Compile-time parameters is how Zig implements generics. It is compile-time duck typing.
fn max(comptime T: type, a: T, b: T) -> T {
if (a > b) a else b
}
fn gimmeTheBiggerFloat(a: f32, b: f32) -> f32 {
max(f32, a, b)
}
fn gimmeTheBiggerInteger(a: u64, b: u64) -> u64 {
max(u64, a, b)
}
In Zig, types are first-class citizens. They can be assigned to variables, passed as parameters to functions,
and returned from functions. However, they can only be used in expressions which are known at compile-time,
which is why the parameter T
in the above snippet must be marked with comptime
.
A comptime
parameter means that:
For example, if we were to introduce another function to the above snippet:
fn max(comptime T: type, a: T, b: T) -> T {
if (a > b) a else b
}
fn letsTryToPassARuntimeType(condition: bool) {
const result = max(
if (condition) f32 else u64,
1234,
5678);
}
Then we get this result from the compiler:
./test.zig:6:9: error: unable to evaluate constant expression
if (condition) f32 else u64,
^
This is an error because the programmer attempted to pass a value only known at run-time to a function which expects a value known at compile-time.
Another way to get an error is if we pass a type that violates the type checker when the function is analyzed. This is what it means to have compile-time duck typing.
For example:
fn max(comptime T: type, a: T, b: T) -> T {
if (a > b) a else b
}
fn letsTryToCompareBools(a: bool, b: bool) -> bool {
max(bool, a, b)
}
The code produces this error message:
./test.zig:2:11: error: operator not allowed for type 'bool'
if (a > b) a else b
^
./test.zig:5:8: note: called from here
max(bool, a, b)
^
On the flip side, inside the function definition with the comptime
parameter, the
value is known at compile-time. This means that we actually could make this work for the bool type
if we wanted to:
fn max(comptime T: type, a: T, b: T) -> T {
if (T == bool) {
return a or b;
} else if (a > b) {
return a;
} else {
return b;
}
}
fn letsTryToCompareBools(a: bool, b: bool) -> bool {
max(bool, a, b)
}
This works because Zig implicitly inlines if
expressions when the condition
is known at compile-time, and the compiler guarantees that it will skip analysis of
the branch not taken.
This means that the actual function generated for max
in this situation looks like
this:
fn max(a: bool, b: bool) -> bool {
return a or b;
}
All the code that dealt with compile-time known values is eliminated and we are left with only the necessary run-time code to accomplish the task.
This works the same way for switch
expressions - they are implicitly inlined
when the target expression is compile-time known.
In Zig, the programmer can label variables as comptime
. This guarantees to the compiler
that every load and store of the variable is performed at compile-time. Any violation of this results in a
compile error.
This combined with the fact that we can inline
loops allows us to write
a function which is partially evaluated at compile-time and partially at run-time.
For example:
const assert = @import("std").debug.assert;
const CmdFn = struct {
name: []const u8,
func: fn(i32) -> i32,
};
const cmd_fns = []CmdFn{
CmdFn {.name = "one", .func = one},
CmdFn {.name = "two", .func = two},
CmdFn {.name = "three", .func = three},
};
fn one(value: i32) -> i32 { value + 1 }
fn two(value: i32) -> i32 { value + 2 }
fn three(value: i32) -> i32 { value + 3 }
fn performFn(comptime prefix_char: u8, start_value: i32) -> i32 {
var result: i32 = start_value;
comptime var i = 0;
inline while (i < cmd_fns.len) : (i += 1) {
if (cmd_fns[i].name[0] == prefix_char) {
result = cmd_fns[i].func(result);
}
}
return result;
}
test "perform fn" {
assert(performFn('t', 1) == 6);
assert(performFn('o', 0) == 1);
assert(performFn('w', 99) == 99);
}
This example is a bit contrived, because the compile-time evaluation component is unnecessary;
this code would work fine if it was all done at run-time. But it does end up generating
different code. In this example, the function performFn
is generated three different times,
for the different values of prefix_char
provided:
// From the line:
// assert(performFn('t', 1) == 6);
fn performFn(start_value: i32) -> i32 {
var result: i32 = start_value;
result = two(result);
result = three(result);
return result;
}
// From the line:
// assert(performFn('o', 0) == 1);
fn performFn(start_value: i32) -> i32 {
var result: i32 = start_value;
result = one(result);
return result;
}
// From the line:
// assert(performFn('w', 99) == 99);
fn performFn(start_value: i32) -> i32 {
var result: i32 = start_value;
return result;
}
Note that this happens even in a debug build; in a release build these generated functions still pass through rigorous LLVM optimizations. The important thing to note, however, is not that this is a way to write more optimized code, but that it is a way to make sure that what should happen at compile-time, does happen at compile-time. This catches more errors and as demonstrated later in this article, allows expressiveness that in other languages requires using macros, generated code, or a preprocessor to accomplish.
In Zig, it matters whether a given expression is known at compile-time or run-time. A programmer can
use a comptime
expression to guarantee that the expression will be evaluated at compile-time.
If this cannot be accomplished, the compiler will emit an error. For example:
extern fn exit() -> unreachable;
fn foo() {
comptime {
exit();
}
}
./test.zig:5:9: error: unable to evaluate constant expression
exit();
^
It doesn't make sense that a program could call exit()
(or any other external function)
at compile-time, so this is a compile error. However, a comptime
expression does much
more than sometimes cause a compile error.
Within a comptime
expression:
comptime
variables.if
, while
, for
, switch
, and goto
expressions are evaluated at compile-time, or emit a compile error if this is not possible.This means that a programmer can create a function which is called both at compile-time and run-time, with no modification to the function required.
Let's look at an example:
const assert = @import("std").debug.assert;
fn fibonacci(index: u32) -> u32 {
if (index < 2) return index;
return fibonacci(index - 1) + fibonacci(index - 2);
}
test "fibonacci" {
// test fibonacci at run-time
assert(fibonacci(7) == 13);
// test fibonacci at compile-time
comptime {
assert(fibonacci(7) == 13);
}
}
$ zig test test.zig
Test 1/1 testFibonacci...OK
Imagine if we had forgotten the base case of the recursive function and tried to run the tests:
const assert = @import("std").debug.assert;
fn fibonacci(index: u32) -> u32 {
//if (index < 2) return index;
return fibonacci(index - 1) + fibonacci(index - 2);
}
test "fibonacci" {
comptime {
assert(fibonacci(7) == 13);
}
}
$ zig test test.zig
./test.zig:3:28: error: operation caused overflow
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:14:25: note: called from here
assert(fibonacci(7) == 13);
^
The compiler produces an error which is a stack trace from trying to evaluate the function at compile-time.
Luckily, we used an unsigned integer, and so when we tried to subtract 1 from 0, it triggered undefined behavior, which is always a compile error if the compiler knows it happened. But what would have happened if we used a signed integer?
const assert = @import("std").debug.assert;
fn fibonacci(index: i32) -> i32 {
//if (index < 2) return index;
return fibonacci(index - 1) + fibonacci(index - 2);
}
test "fibonacci" {
comptime {
assert(fibonacci(7) == 13);
}
}
./test.zig:3:21: error: evaluation exceeded 1000 backwards branches
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
./test.zig:3:21: note: called from here
return fibonacci(index - 1) + fibonacci(index - 2);
^
The compiler noticed that evaluating this function at compile-time took a long time, and thus emitted a compile error and gave up. If the programmer wants to increase the budget for compile-time computation, they can use a built-in function called @setEvalBranchQuota to change the default number 1000 to something else.
What if we fix the base case, but put the wrong value in the assert
line?
comptime {
assert(fibonacci(7) == 99999);
}
./test.zig:15:14: error: unable to evaluate constant expression
if (!ok) unreachable;
^
./test.zig:10:15: note: called from here
assert(fibonacci(7) == 99999);
^
What happened is Zig started interpreting the assert
function with the
parameter ok
set to false
. When the interpreter hit
unreachable
it emitted a compile error, because reaching unreachable
code is undefined behavior, and undefined behavior causes a compile error if it is detected
at compile-time.
In the global scope (outside of any function), all expressions are implicitly
comptime
expressions. This means that we can use functions to
initialize complex static data. For example:
const first_25_primes = firstNPrimes(25);
const sum_of_first_25_primes = sum(first_25_primes);
fn firstNPrimes(comptime n: usize) -> [n]i32 {
var prime_list: [n]i32 = undefined;
var next_index: usize = 0;
var test_number: i32 = 2;
while (next_index < prime_list.len) : (test_number += 1) {
var test_prime_index: usize = 0;
var is_prime = true;
while (test_prime_index < next_index) : (test_prime_index += 1) {
if (test_number % prime_list[test_prime_index] == 0) {
is_prime = false;
break;
}
}
if (is_prime) {
prime_list[next_index] = test_number;
next_index += 1;
}
}
return prime_list;
}
fn sum(numbers: []i32) -> i32 {
var result: i32 = 0;
for (numbers) |x| {
result += x;
}
return result;
}
When we compile this program, Zig generates the constants with the answer pre-computed. Here are the lines from the generated LLVM IR:
@0 = internal unnamed_addr constant [25 x i32] [i32 2, i32 3, i32 5, i32 7, i32 11, i32 13, i32 17, i32 19, i32 23, i32 29, i32 31, i32 37, i32 41, i32 43, i32 47, i32 53, i32 59, i32 61, i32 67, i32 71, i32 73, i32 79, i32 83, i32 89, i32 97]
@1 = internal unnamed_addr constant i32 1060
Note that we did not have to do anything special with the syntax of these functions. For example,
we could call the sum
function as is with a slice of numbers whose length and values were
only known at run-time.
Zig uses these capabilities to implement generic data structures without introducing any special-case syntax. If you followed along so far, you may already know how to create a generic data structure.
Here is an example of a generic List
data structure, that we will instantiate with
the type i32
. In Zig we refer to the type as List(i32)
.
fn List(comptime T: type) -> type {
struct {
items: []T,
len: usize,
}
}
That's it. It's a function that returns an anonymous struct
. For the purposes of error messages
and debugging, Zig infers the name "List(i32)"
from the function name and parameters invoked when creating
the anonymous struct.
To keep the language small and uniform, all aggregate types in Zig are anonymous. To give a type a name, we assign it to a constant:
const Node = struct {
next: &Node,
name: []u8,
};
This works because all top level declarations are order-independent, and as long as there isn't
an actual infinite regression, values can refer to themselves, directly or indirectly. In this case,
Node
refers to itself as a pointer, which is not actually an infinite regression, so
it works fine.
Putting all of this together, let's seee how printf
works in Zig.
const io = @import("std").io;
const a_number: i32 = 1234;
const a_string = "foobar";
pub fn main(args: [][]u8) -> %void {
%%io.stderr.printf("here is a string: '{}' here is a number: {}\n", a_string, a_number);
}
here is a string: 'foobar' here is a number: 1234
Let's crack open the implementation of this and see how it works:
/// Calls print and then flushes the buffer.
pub fn printf(self: &OutStream, comptime format: []const u8, args: ...) -> %void {
const State = enum {
Start,
OpenBrace,
CloseBrace,
};
comptime var start_index: usize = 0;
comptime var state = State.Start;
comptime var next_arg: usize = 0;
inline for (format) |c, i| {
switch (state) {
State.Start => switch (c) {
'{' => {
if (start_index < i) %return self.write(format[start_index...i]);
state = State.OpenBrace;
},
'}' => {
if (start_index < i) %return self.write(format[start_index...i]);
state = State.CloseBrace;
},
else => {},
},
State.OpenBrace => switch (c) {
'{' => {
state = State.Start;
start_index = i;
},
'}' => {
%return self.printValue(args[next_arg]);
next_arg += 1;
state = State.Start;
start_index = i + 1;
},
else => @compileError("Unknown format character: " ++ c),
},
State.CloseBrace => switch (c) {
'}' => {
state = State.Start;
start_index = i;
},
else => @compileError("Single '}' encountered in format string"),
},
}
}
comptime {
if (args.len != next_arg) {
@compileError("Unused arguments");
}
if (state != State.Start) {
@compileError("Incomplete format string: " ++ format);
}
}
if (start_index < format.len) {
%return self.write(format[start_index...format.len]);
}
%return self.flush();
}
This is a proof of concept implementation; the actual function in the standard library has more formatting capabilities.
Note that this is not hard-coded into the Zig compiler; this is userland code in the standard library.
When this function is analyzed from our example code above, Zig partially evaluates the function and emits a function that actually looks like this:
pub fn printf(self: &OutStream, arg0: i32, arg1: []const u8) -> %void {
%return self.write("here is a string: '");
%return self.printValue(arg0);
%return self.write("' here is a number: ");
%return self.printValue(arg1);
%return self.write("\n");
%return self.flush();
}
printValue
is a function that takes a parameter of any type, and does different things depending
on the type:
pub fn printValue(self: &OutStream, value: var) -> %void {
const T = @typeOf(value);
if (@isInteger(T)) {
return self.printInt(T, value);
} else if (@isFloat(T)) {
return self.printFloat(T, value);
} else if (@canImplicitCast([]const u8, value)) {
const casted_value = ([]const u8)(value);
return self.write(casted_value);
} else {
@compileError("Unable to print type '" ++ @typeName(T) ++ "'");
}
}
And now, what happens if we give too many arguments to printf
?
%%io.stdout.printf("here is a string: '{}' here is a number: {}\n",
a_string, a_number, a_number);
.../std/io.zig:147:17: error: Unused arguments
@compileError("Unused arguments");
^
./test.zig:7:23: note: called from here
%%io.stdout.printf("here is a number: {} and here is a string: {}\n",
^
Zig gives programmers the tools needed to protect themselves against their own mistakes.
Zig doesn't care whether the format argument is a string literal,
only that it is a compile-time known value that is implicitly castable to a []const u8
:
const io = @import("std").io;
const a_number: i32 = 1234;
const a_string = "foobar";
const fmt = "here is a string: '{}' here is a number: {}\n";
pub fn main(args: [][]u8) -> %void {
%%io.stderr.printf(fmt, a_string, a_number);
}
This works fine.
Zig does not special case string formatting in the compiler and instead exposes enough power to accomplish this task in userland. It does so without introducing another language on top of Zig, such as a macro language or a preprocessor language. It's Zig all the way down.
TODO: suggestion to not use inline unless necessary
TODO: inline while
TODO: inline for
TODO: suggestion to not use inline unless necessary
TODO: example of inline assembly
TODO: example of module level assembly
TODO: example of using inline assembly return value
TODO: example of using inline assembly assigning values to variables
TODO: @fence()
TODO: @atomic rmw
TODO: builtin atomic memory ordering enum
Builtin functions are provided by the compiler and are prefixed with @
.
The comptime
keyword on a parameter means that the parameter must be known
at compile time.
@addWithOverflow(comptime T: type, a: T, b: T, result: &T) -> bool
Performs *result = a + b
. If overflow or underflow occurs,
stores the overflowed bits in result
and returns true
.
If no overflow or underflow occurs, returns false
.
@bitCast(comptime DestType: type, value: var) -> DestType
Converts a value of one type to another type.
Asserts that @sizeOf(@typeOf(value)) == @sizeOf(DestType)
.
Asserts that @typeId(DestType) != @import("builtin").TypeId.Pointer
. Use @ptrCast
or @intToPtr
if you need this.
Can be used for these things for example:
f32
to u32
bitsi32
to u32
preserving twos complement
Works at compile-time if value
is known at compile time. It's a compile error to bitcast a struct to a scalar type of the same size since structs have undefined layout. However if the struct is packed then it works.
@breakpoint()
This function inserts a platform-specific debug trap instruction which causes debuggers to break there.
This function is only valid within function scope.
@alignCast(comptime alignment: u29, ptr: var) -> var
ptr
can be &T
, fn()
, ?&T
,
?fn()
, or []T
. It returns the same type as ptr
except with the alignment adjusted to the new value.
A pointer alignment safety check is added to the generated code to make sure the pointer is aligned as promised.
@alignOf(comptime T: type) -> (number literal)
This function returns the number of bytes that this type should be aligned to for the current target to match the C ABI. When the child type of a pointer has this alignment, the alignment can be omitted from the type.
const assert = @import("std").debug.assert;
comptime {
assert(&u32 == &align(@alignOf(u32)) u32);
}
The result is a target-specific compile time constant. It is guaranteed to be less than or equal to @sizeOf(T).
See also:
@cDefine(comptime name: []u8, value)
This function can only occur inside @cImport
.
This appends #define $name $value
to the @cImport
temporary buffer.
To define without a value, like this:
#define _GNU_SOURCE
Use the void value, like this:
@cDefine("_GNU_SOURCE", {})
See also:
@cImport(expression) -> (namespace)
This function parses C code and imports the functions, types, variables, and compatible macro definitions into the result namespace.
expression
is interpreted at compile time. The builtin functions
@cInclude
, @cDefine
, and @cUndef
work
within this expression, appending to a temporary buffer which is then parsed as C code.
See also:
@cInclude(comptime path: []u8)
This function can only occur inside @cImport
.
This appends #include <$path>\n
to the c_import
temporary buffer.
See also:
@cUndef(comptime name: []u8)
This function can only occur inside @cImport
.
This appends #undef $name
to the @cImport
temporary buffer.
See also:
@canImplicitCast(comptime T: type, value) -> bool
Returns whether a value can be implicitly casted to a given type.
@clz(x: T) -> U
This function counts the number of leading zeroes in x
which is an integer
type T
.
The return type U
is an unsigned integer with the minimum number
of bits that can represent the value T.bit_count
.
If x
is zero, @clz
returns T.bit_count
.
@cmpxchg(ptr: &T, cmp: T, new: T, success_order: AtomicOrder, fail_order: AtomicOrder) -> bool
This function performs an atomic compare exchange operation.
AtomicOrder
can be found with @import("builtin").AtomicOrder
.
@typeOf(ptr).alignment
must be >= @sizeOf(T).
See also:
@compileError(comptime msg: []u8)
This function, when semantically analyzed, causes a compile error with the
message msg
.
There are several ways that code avoids being semantically checked, such as
using if
or switch
with compile time constants,
and comptime
functions.
@compileLog(args: ...)
This function, when semantically analyzed, causes a compile error, but it does not prevent compile-time code from continuing to run, and it otherwise does not interfere with analysis.
Each of the arguments will be serialized to a printable debug value and output to stderr, and then a newline at the end.
This function can be used to do "printf debugging" on compile-time executing code.
@ctz(x: T) -> U
This function counts the number of trailing zeroes in x
which is an integer
type T
.
The return type U
is an unsigned integer with the minimum number
of bits that can represent the value T.bit_count
.
If x
is zero, @ctz
returns T.bit_count
.
@divExact(numerator: T, denominator: T) -> T
Exact division. Caller guarantees denominator != 0
and
@divTrunc(numerator, denominator) * denominator == numerator
.
@divExact(6, 3) == 2
@divExact(a, b) * b == a
See also:
@divFloor(numerator: T, denominator: T) -> T
Floored division. Rounds toward negative infinity. For unsigned integers it is
the same as numerator / denominator
. Caller guarantees denominator != 0
and
!(@typeId(T) == builtin.TypeId.Int and T.is_signed and numerator == @minValue(T) and denominator == -1)
.
@divFloor(-5, 3) == -2
@divFloor(a, b) + @mod(a, b) == a
See also:
@divTrunc(numerator: T, denominator: T) -> T
Truncated division. Rounds toward zero. For unsigned integers it is
the same as numerator / denominator
. Caller guarantees denominator != 0
and
!(@typeId(T) == builtin.TypeId.Int and T.is_signed and numerator == @minValue(T) and denominator == -1)
.
@divTrunc(-5, 3) == -1
@divTrunc(a, b) + @rem(a, b) == a
See also:
@embedFile(comptime path: []const u8) -> [X]u8
This function returns a compile time constant fixed-size array with length
equal to the byte count of the file given by path
. The contents of the array
are the contents of the file.
path
is absolute or relative to the current file, just like @import
.
See also:
@enumTagName(value: var) -> []const u8
Converts an enum tag name to a slice of bytes.
@errorName(err: error) -> []u8
This function returns the string representation of an error. If an error declaration is:
error OutOfMem
Then the string representation is "OutOfMem"
.
If there are no calls to @errorName
in an entire application,
or all calls have a compile-time known value for err
, then no
error name table will be generated.
@fence(order: AtomicOrder)
The fence
function is used to introduce happens-before edges between operations.
AtomicOrder
can be found with @import("builtin").AtomicOrder
.
See also:
@fieldParentPtr(comptime ParentType: type, comptime field_name: []const u8,
field_ptr: &T) -> &ParentType
Given a pointer to a field, returns the base pointer of a struct.
@frameAddress()
This function returns the base pointer of the current stack frame.
The implications of this are target specific and not consistent across all platforms. The frame address may not be available in release mode due to aggressive optimizations.
This function is only valid within function scope.
@import(comptime path: []u8) -> (namespace)
This function finds a zig file corresponding to path
and imports all the
public top level declarations into the resulting namespace.
path
can be a relative or absolute path, or it can be the name of a package.
If it is a relative path, it is relative to the file that contains the @import
function call.
The following packages are always available:
@import("std")
- Zig Standard Library@import("builtin")
- Compiler-provided types and variablesSee also:
@inlineCall(function: X, args: ...) -> Y
This calls a function, in the same way that invoking an expression with parentheses does:
const assert = @import("std").debug.assert;
test "inline function call" {
assert(@inlineCall(add, 3, 9) == 12);
}
fn add(a: i32, b: i32) -> i32 { a + b }
Unlike a normal function call, however, @inlineCall
guarantees that the call
will be inlined. If the call cannot be inlined, a compile error is emitted.
@intToPtr(comptime DestType: type, int: usize) -> DestType
Converts an integer to a pointer. To convert the other way, use @ptrToInt.
@IntType(comptime is_signed: bool, comptime bit_count: u8) -> type
This function returns an integer type with the given signness and bit count.
@maxValue(comptime T: type) -> (number literal)
This function returns the maximum value of the integer type T
.
The result is a compile time constant.
@memberCount(comptime T: type) -> (number literal)
This function returns the number of enum values in an enum type.
The result is a compile time constant.
@memcpy(noalias dest: &u8, noalias source: &const u8, byte_count: usize)
This function copies bytes from one region of memory to another. dest
and
source
are both pointers and must not overlap.
This function is a low level intrinsic with no safety mechanisms. Most code should not use this function, instead using something like this:
for (source[0...byte_count]) |b, i| dest[i] = b;
The optimizer is intelligent enough to turn the above snippet into a memcpy.
There is also a standard library function for this:
const mem = @import("std").mem;
mem.copy(u8, dest[0...byte_count], source[0...byte_count]);
@memset(dest: &u8, c: u8, byte_count: usize)
This function sets a region of memory to c
. dest
is a pointer.
This function is a low level intrinsic with no safety mechanisms. Most code should not use this function, instead using something like this:
for (dest[0...byte_count]) |*b| *b = c;
The optimizer is intelligent enough to turn the above snippet into a memset.
There is also a standard library function for this:
const mem = @import("std").mem;
mem.set(u8, dest, c);
@minValue(comptime T: type) -> (number literal)
This function returns the minimum value of the integer type T.
The result is a compile time constant.
@mod(numerator: T, denominator: T) -> T
Modulus division. For unsigned integers this is the same as
numerator % denominator
. Caller guarantees denominator > 0
.
@mod(-5, 3) == 1
@divFloor(a, b) + @mod(a, b) == a
See also:
@import("std").math.mod
@mulWithOverflow(comptime T: type, a: T, b: T, result: &T) -> bool
Performs *result = a * b
. If overflow or underflow occurs,
stores the overflowed bits in result
and returns true
.
If no overflow or underflow occurs, returns false
.
@offsetOf(comptime T: type, comptime field_name: [] const u8) -> (number literal)
This function returns the byte offset of a field relative to its containing struct.
@OpaqueType() -> type
Creates a new type with an unknown size and alignment.
This is typically used for type safety when interacting with C code that does not expose struct details. Example:
const Derp = @OpaqueType();
const Wat = @OpaqueType();
extern fn bar(d: &Derp);
export fn foo(w: &Wat) {
bar(w);
}
$ ./zig build-obj test.zig
test.zig:5:9: error: expected type '&Derp', found '&Wat'
bar(w);
^
@panic(message: []const u8) -> noreturn
Invokes the panic handler function. By default the panic handler function
calls the public panic
function exposed in the root source file, or
if there is not one specified, invokes the one provided in std/special/panic.zig
.
Generally it is better to use @import("std").debug.panic
.
However, @panic
can be useful for 2 scenarios:
See also:
@ptrCast(comptime DestType: type, value: var) -> DestType
Converts a pointer of one type to a pointer of another type.
@ptrToInt(value: var) -> usize
Converts value
to a usize
which is the address of the pointer. value
can be one of these types:
&T
?&T
fn()
?fn()
To convert the other way, use @intToPtr
@rem(numerator: T, denominator: T) -> T
Remainder division. For unsigned integers this is the same as
numerator % denominator
. Caller guarantees denominator > 0
.
@rem(-5, 3) == -2
@divTrunc(a, b) + @rem(a, b) == a
See also:
@import("std").math.rem
@returnAddress()
This function returns a pointer to the return address of the current stack frame.
The implications of this are target specific and not consistent across all platforms.
This function is only valid within function scope.
@setDebugSafety(scope, safety_on: bool)
Sets whether debug safety checks are on for a given scope.
@setEvalBranchQuota(new_quota: usize)
Changes the maximum number of backwards branches that compile-time code execution can use before giving up and making a compile error.
If the new_quota
is smaller than the default quota (1000
) or
a previously explicitly set quota, it is ignored.
Example:
comptime {
var i = 0;
while (i < 1001) : (i += 1) {}
}
$ ./zig build-obj test.zig
/home/andy/dev/zig/build/test.zig:3:5: error: evaluation exceeded 1000 backwards branches
while (i < 1001) : (i += 1) {}
^
Now we use @setEvalBranchQuota
:
comptime {
@setEvalBranchQuota(1001);
var i = 0;
while (i < 1001) : (i += 1) {}
}
$ ./zig build-obj test.zig
(no output because it worked fine)
See also:
@setFloatMode(scope, mode: @import("builtin").FloatMode)
Sets the floating point mode for a given scope. Possible values are:
pub const FloatMode = enum {
Optimized,
Strict,
};
Optimized
(default) - Floating point operations may do all of the following:
-ffast-math
in GCC.
Strict
- Floating point operations follow strict IEEE compliance.
See also:
@setGlobalLinkage(global_variable_name, comptime linkage: GlobalLinkage)
GlobalLinkage
can be found with @import("builtin").GlobalLinkage
.
See also:
@setGlobalSection(global_variable_name, comptime section_name: []const u8) -> bool
Puts the global variable in the specified section.
@shlExact(value: T, shift_amt: Log2T) -> T
Performs the left shift operation (<<
). Caller guarantees
that the shift will not shift any 1 bits out.
The type of shift_amt
is an unsigned integer with log2(T.bit_count)
bits.
This is because shift_amt >= T.bit_count
is undefined behavior.
See also:
@shlWithOverflow(comptime T: type, a: T, shift_amt: Log2T, result: &T) -> bool
Performs *result = a << b
. If overflow or underflow occurs,
stores the overflowed bits in result
and returns true
.
If no overflow or underflow occurs, returns false
.
The type of shift_amt
is an unsigned integer with log2(T.bit_count)
bits.
This is because shift_amt >= T.bit_count
is undefined behavior.
See also:
@shrExact(value: T, shift_amt: Log2T) -> T
Performs the right shift operation (>>
). Caller guarantees
that the shift will not shift any 1 bits out.
The type of shift_amt
is an unsigned integer with log2(T.bit_count)
bits.
This is because shift_amt >= T.bit_count
is undefined behavior.
See also:
@sizeOf(comptime T: type) -> (number literal)
This function returns the number of bytes it takes to store T
in memory.
The result is a target-specific compile time constant.
@subWithOverflow(comptime T: type, a: T, b: T, result: &T) -> bool
Performs *result = a - b
. If overflow or underflow occurs,
stores the overflowed bits in result
and returns true
.
If no overflow or underflow occurs, returns false
.
@truncate(comptime T: type, integer) -> T
This function truncates bits from an integer type, resulting in a smaller integer type.
The following produces a crash in debug mode and undefined behavior in release mode:
const a: u16 = 0xabcd;
const b: u8 = u8(a);
However this is well defined and working code:
const a: u16 = 0xabcd;
const b: u8 = @truncate(u8, a);
// b is now 0xcd
This function always truncates the significant bits of the integer, regardless of endianness on the target platform.
@typeId(comptime T: type) -> @import("builtin").TypeId
Returns which kind of type something is. Possible values:
pub const TypeId = enum {
Type,
Void,
Bool,
NoReturn,
Int,
Float,
Pointer,
Array,
Struct,
FloatLiteral,
IntLiteral,
UndefinedLiteral,
NullLiteral,
Nullable,
ErrorUnion,
Error,
Enum,
EnumTag,
Union,
Fn,
Namespace,
Block,
BoundFn,
ArgTuple,
Opaque,
};
@typeName(T: type) -> []u8
This function returns the string representation of a type.
@typeOf(expression) -> type
This function returns a compile-time constant, which is the type of the expression passed as an argument. The expression is evaluated.
Zig has three build modes:
To add standard build options to a build.zig
file:
const Builder = @import("std").build.Builder;
pub fn build(b: &Builder) {
const exe = b.addExecutable("example", "example.zig");
exe.setBuildMode(b.standardReleaseOptions());
b.default_step.dependOn(&exe.step);
}
This causes these options to be available:
-Drelease-safe=(bool) optimizations on and safety on
-Drelease-fast=(bool) optimizations on and safety off
$ zig build-exe example.zig
$ zig build-exe example.zig --release-fast
$ zig build-exe example.zig --release-safe
See also:
Zig has many instances of undefined behavior. If undefined behavior is
detected at compile-time, Zig emits an error. Most undefined behavior that
cannot be detected at compile-time can be detected at runtime. In these cases,
Zig has safety checks. Safety checks can be disabled on a per-block basis
with @setDebugSafety
. The ReleaseFast
build mode disables all safety checks in order to facilitate optimizations.
When a safety check fails, Zig crashes with a stack trace, like this:
test "safety check" {
unreachable;
}
$ zig test test.zig
Test 1/1 safety check...reached unreachable code
/home/andy/dev/zig/build/lib/zig/std/special/zigrt.zig:16:35: 0x000000000020331c in ??? (test)
@import("std").debug.panic("{}", message_ptr[0...message_len]);
^
/home/andy/dev/zig/build/test.zig:2:5: 0x0000000000203297 in ??? (test)
unreachable;
^
/home/andy/dev/zig/build/lib/zig/std/special/test_runner.zig:9:21: 0x0000000000214b0a in ??? (test)
test_fn.func();
^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:50:21: 0x0000000000214a17 in ??? (test)
return root.main();
^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:37:13: 0x00000000002148d0 in ??? (test)
callMain(argc, argv, envp) %% exit(1);
^
/home/andy/dev/zig/build/lib/zig/std/special/bootstrap.zig:30:20: 0x0000000000214820 in ??? (test)
callMainAndExit()
^
Tests failed. Use the following command to reproduce the failure:
./test
At compile-time:
comptime {
assert(false);
}
fn assert(ok: bool) {
if (!ok) unreachable; // assertion failure
}
$ zig build-obj test.zig
/home/andy/dev/zig/build/test.zig:5:14: error: unable to evaluate constant expression
if (!ok) unreachable; // assertion failure
^
/home/andy/dev/zig/build/test.zig:2:11: note: called from here
assert(false);
^
/home/andy/dev/zig/build/test.zig:1:10: note: called from here
comptime {
^
At runtime crashes with the message reached unreachable code
and a stack trace.
At compile-time:
comptime {
const array = "hello";
const garbage = array[5];
}
$ zig build-obj test.zig
/home/andy/dev/zig/build/test.zig:3:26: error: index 5 outside array of size 5
const garbage = array[5];
^
At runtime crashes with the message index out of bounds
and a stack trace.
At compile-time:
comptime {
const value: i32 = -1;
const unsigned = u32(value);
}
$ zig build-obj test.zig test.zig:3:25: error: attempt to cast negative value to unsigned integer
const unsigned = u32(value);
^
At runtime crashes with the message attempt to cast negative value to unsigned integer
and a stack trace.
If you are trying to obtain the maximum value of an unsigned integer, use @maxValue(T)
,
where T
is the integer type, such as u32
.
At compile-time:
comptime {
const spartan_count: u16 = 300;
const byte = u8(spartan_count);
}
$ zig build-obj test.zig
test.zig:3:20: error: cast from 'u16' to 'u8' truncates bits
const byte = u8(spartan_count);
^
At runtime crashes with the message integer cast truncated bits
and a stack trace.
If you are trying to truncate bits, use @truncate(T, value)
,
where T
is the integer type, such as u32
, and value
is the value you want to truncate.
The following operators can cause integer overflow:
+
(addition)-
(subtraction)-
(negation)*
(multiplication)/
(division)@divTrunc
(division)@divFloor
(division)@divExact
(division)Example with addition at compile-time:
comptime {
var byte: u8 = 255;
byte += 1;
}
$ zig build-obj test.zig
/home/andy/dev/zig/build/test.zig:3:10: error: operation caused overflow
byte += 1;
^
At runtime crashes with the message integer overflow
and a stack trace.
These functions provided by the standard library return possible errors.
@import("std").math.add
@import("std").math.sub
@import("std").math.mul
@import("std").math.divTrunc
@import("std").math.divFloor
@import("std").math.divExact
@import("std").math.shl
Example of catching an overflow for addition:
const math = @import("std").math;
const io = @import("std").io;
pub fn main() -> %void {
var byte: u8 = 255;
byte = if (math.add(u8, byte, 1)) |result| {
result
} else |err| {
%%io.stderr.printf("unable to add one: {}\n", @errorName(err));
return err;
};
%%io.stderr.printf("result: {}\n", byte);
}
$ zig build-exe test.zig
$ ./test
unable to add one: Overflow
These builtins return a bool
of whether or not overflow
occurred, as well as returning the overflowed bits:
@addWithOverflow
@subWithOverflow
@mulWithOverflow
@shlWithOverflow
Example of @addWithOverflow
:
const io = @import("std").io;
pub fn main() -> %void {
var byte: u8 = 255;
var result: u8 = undefined;
if (@addWithOverflow(u8, byte, 10, &result)) {
%%io.stderr.printf("overflowed result: {}\n", result);
} else {
%%io.stderr.printf("result: {}\n", result);
}
}
$ zig build-exe test.zig
$ ./test
overflowed result: 9
These operations have guaranteed wraparound semantics.
+%
(wraparound addition)-%
(wraparound subtraction)-%
(wraparound negation)*%
(wraparound multiplication)const assert = @import("std").debug.assert;
test "wraparound addition and subtraction" {
const x: i32 = @maxValue(i32);
const min_val = x +% 1;
assert(min_val == @minValue(i32));
const max_val = min_val -% 1;
assert(max_val == @maxValue(i32));
}
At compile-time:
comptime {
const x = @shlExact(u8(0b01010101), 2);
}
$ zig build-obj test.zig
/home/andy/dev/zig/build/test.zig:2:15: error: operation caused overflow
const x = @shlExact(u8(0b01010101), 2);
^
At runtime crashes with the message left shift overflowed bits
and a stack trace.
At compile-time:
comptime {
const x = @shrExact(u8(0b10101010), 2);
}
$ zig build-obj test.zig
/home/andy/dev/zig/build/test.zig:2:15: error: exact shift shifted out 1 bits
const x = @shrExact(u8(0b10101010), 2);
^
At runtime crashes with the message right shift overflowed bits
and a stack trace.
At compile-time:
comptime {
const a: i32 = 1;
const b: i32 = 0;
const c = a / b;
}
$ zig build-obj test.zig
/home/andy/dev/zig/build/test.zig:4:17: error: division by zero is undefined
const c = a / b;
^
At runtime crashes with the message division by zero
and a stack trace.
At compile-time:
comptime {
const a: i32 = 10;
const b: i32 = 0;
const c = a % b;
}
$ zig build-obj test.zig
/home/andy/dev/zig/build/test.zig:4:17: error: division by zero is undefined
const c = a % b;
^
At runtime crashes with the message remainder division by zero
and a stack trace.
TODO
TODO
At compile-time:
comptime {
const nullable_number: ?i32 = null;
const number = ??nullable_number;
}
$ zig build-obj test.zig
/home/andy/dev/zig/build/test.zig:3:20: error: unable to unwrap null
const number = ??nullable_number;
^
At runtime crashes with the message attempt to unwrap null
and a stack trace.
One way to avoid this crash is to test for null instead of assuming non-null, with
the if
expression:
const io = @import("std").io;
pub fn main() -> %void {
const nullable_number: ?i32 = null;
if (nullable_number) |number| {
%%io.stderr.printf("got number: {}\n", number);
} else {
%%io.stderr.printf("it's null\n");
}
}
% zig build-exe test.zig
$ ./test
it's null
At compile-time:
comptime {
const number = %%getNumberOrFail();
}
error UnableToReturnNumber;
fn getNumberOrFail() -> %i32 {
return error.UnableToReturnNumber;
}
$ zig build-obj test.zig
/home/andy/dev/zig/build/test.zig:2:20: error: unable to unwrap error 'UnableToReturnNumber'
const number = %%getNumberOrFail();
^
At runtime crashes with the message attempt to unwrap error: ErrorCode
and a stack trace.
One way to avoid this crash is to test for an error instead of assuming a successful result, with
the if
expression:
const io = @import("std").io;
pub fn main() -> %void {
const result = getNumberOrFail();
if (result) |number| {
%%io.stderr.printf("got number: {}\n", number);
} else |err| {
%%io.stderr.printf("got error: {}\n", @errorName(err));
}
}
error UnableToReturnNumber;
fn getNumberOrFail() -> %i32 {
return error.UnableToReturnNumber;
}
$ zig build-exe test.zig
$ ./test
got error: UnableToReturnNumber
At compile-time:
error AnError;
comptime {
const err = error.AnError;
const number = u32(err) + 10;
const invalid_err = error(number);
}
$ zig build-obj test.zig
/home/andy/dev/zig/build/test.zig:5:30: error: integer value 11 represents no error
const invalid_err = error(number);
^
At runtime crashes with the message invalid error code
and a stack trace.
TODO
TODO
TODO: explain no default allocator in zig
TODO: show how to use the allocator interface
TODO: mention debug allocator
TODO: importance of checking for allocation failure
TODO: mention overcommit and the OOM Killer
TODO: mention recursion
See also:
Compile variables are accessible by importing the "builtin"
package,
which the compiler makes available to every Zig source file. It contains
compile-time constants such as the current target, endianness, and release mode.
const builtin = @import("builtin");
const separator = if (builtin.os == builtin.Os.windows) '\\' else '/';
Example of what is imported with @import("builtin")
:
pub const Os = enum {
freestanding,
cloudabi,
darwin,
dragonfly,
freebsd,
ios,
kfreebsd,
linux,
lv2,
macosx,
netbsd,
openbsd,
solaris,
windows,
haiku,
minix,
rtems,
nacl,
cnk,
bitrig,
aix,
cuda,
nvcl,
amdhsa,
ps4,
elfiamcu,
tvos,
watchos,
mesa3d,
};
pub const Arch = enum {
armv8_2a,
armv8_1a,
armv8,
armv8m_baseline,
armv8m_mainline,
armv7,
armv7em,
armv7m,
armv7s,
armv7k,
armv6,
armv6m,
armv6k,
armv6t2,
armv5,
armv5te,
armv4t,
armeb,
aarch64,
aarch64_be,
avr,
bpfel,
bpfeb,
hexagon,
mips,
mipsel,
mips64,
mips64el,
msp430,
powerpc,
powerpc64,
powerpc64le,
r600,
amdgcn,
sparc,
sparcv9,
sparcel,
s390x,
tce,
thumb,
thumbeb,
i386,
x86_64,
xcore,
nvptx,
nvptx64,
le32,
le64,
amdil,
amdil64,
hsail,
hsail64,
spir,
spir64,
kalimbav3,
kalimbav4,
kalimbav5,
shave,
lanai,
wasm32,
wasm64,
renderscript32,
renderscript64,
};
pub const Environ = enum {
gnu,
gnuabi64,
gnueabi,
gnueabihf,
gnux32,
code16,
eabi,
eabihf,
android,
musl,
musleabi,
musleabihf,
msvc,
itanium,
cygnus,
amdopencl,
coreclr,
};
pub const ObjectFormat = enum {
unknown,
coff,
elf,
macho,
};
pub const GlobalLinkage = enum {
Internal,
Strong,
Weak,
LinkOnce,
};
pub const AtomicOrder = enum {
Unordered,
Monotonic,
Acquire,
Release,
AcqRel,
SeqCst,
};
pub const Mode = enum {
Debug,
ReleaseSafe,
ReleaseFast,
};
pub const is_big_endian = false;
pub const is_test = false;
pub const os = Os.linux;
pub const arch = Arch.x86_64;
pub const environ = Environ.gnu;
pub const object_format = ObjectFormat.elf;
pub const mode = Mode.ReleaseFast;
pub const link_libs = [][]const u8 {
};
See also:
TODO: explain how root source file finds other files
TODO: pub fn main
TODO: pub fn panic
TODO: if linking with libc you can use export fn main
TODO: order independent top level declarations
TODO: lazy analysis
TODO: using comptime { _ = @import() }
TODO: basic usage
TODO: lazy analysis
TODO: --test-filter
TODO: --test-name-prefix
TODO: testing in releasefast and releasesafe mode. assert still works
TODO: explain purpose, it's supposed to replace make/cmake
TODO: example of building a zig executable
TODO: example of building a C library
Although Zig is independent of C, and, unlike most other languages, does not depend on libc, Zig acknowledges the importance of interacting with existing C code.
There are a few ways that Zig facilitates C interop.
These have guaranteed C ABI compatibility and can be used like any other type.
c_short
c_ushort
c_int
c_uint
c_long
c_ulong
c_longlong
c_ulonglong
c_longdouble
c_void
See also:
extern fn puts(&const u8);
pub fn main() -> %void {
puts(c"this has a null terminator");
puts(
c\\and so
c\\does this
c\\multiline C string literal
);
}
See also:
The @cImport
builtin function can be used
to directly import symbols from .h files:
const c = @cImport(@cInclude("stdio.h"));
pub fn main() -> %void {
c.printf("hello\n");
}
The @cImport
function takes an expression as a parameter.
This expression is evaluated at compile-time and is used to control
preprocessor directives and include multiple .h files:
const builtin = @import("builtin");
const c = @cImport({
@cDefine("NDEBUG", builtin.mode == builtin.Mode.ReleaseFast);
if (something) {
@cDefine("_GNU_SOURCE", {});
}
@cInclude("stdlib.h")
if (something) {
@cUndef("_GNU_SOURCE");
}
@cInclude("soundio.h");
});
See also:
You can mix Zig object files with any other object files that respect the C ABI. Example:
const base64 = @import("std").base64;
export fn decode_base_64(dest_ptr: &u8, dest_len: usize,
source_ptr: &const u8, source_len: usize) -> usize
{
const src = source_ptr[0...source_len];
const dest = dest_ptr[0...dest_len];
return base64.decode(dest, src).len;
}
// This header is generated by zig from base64.zig
#include "base64.h"
#include <string.h>
#include <stdio.h>
int main(int argc, char **argv) {
const char *encoded = "YWxsIHlvdXIgYmFzZSBhcmUgYmVsb25nIHRvIHVz";
char buf[200];
size_t len = decode_base_64(buf, 200, encoded, strlen(encoded));
buf[len] = 0;
puts(buf);
return 0;
}
const Builder = @import("std").build.Builder;
pub fn build(b: &Builder) {
const obj = b.addObject("base64", "base64.zig");
const exe = b.addCExecutable("test");
exe.addCompileFlags([][]const u8 {
"-std=c99",
});
exe.addSourceFile("test.c");
exe.addObject(obj);
exe.setOutputPath(".");
b.default_step.dependOn(&exe.step);
}
$ zig build
$ ./test
all your base are belong to us
See also:
Zig supports generating code for all targets that LLVM supports. Here is
what it looks like to execute zig targets
on a Linux x86_64
computer:
$ zig targets
Architectures:
armv8_2a
armv8_1a
armv8
armv8m_baseline
armv8m_mainline
armv7
armv7em
armv7m
armv7s
armv7k
armv6
armv6m
armv6k
armv6t2
armv5
armv5te
armv4t
armeb
aarch64
aarch64_be
avr
bpfel
bpfeb
hexagon
mips
mipsel
mips64
mips64el
msp430
powerpc
powerpc64
powerpc64le
r600
amdgcn
sparc
sparcv9
sparcel
s390x
tce
thumb
thumbeb
i386
x86_64 (native)
xcore
nvptx
nvptx64
le32
le64
amdil
amdil64
hsail
hsail64
spir64
kalimbav3
kalimbav4
kalimbav5
shave
lanai
wasm32
wasm64
renderscript32
renderscript64
Operating Systems:
freestanding
cloudabi
darwin
dragonfly
freebsd
ios
kfreebsd
linux (native)
lv2
macosx
netbsd
openbsd
solaris
windows
haiku
minix
rtems
nacl
cnk
bitrig
aix
cuda
nvcl
amdhsa
ps4
elfiamcu
tvos
watchos
mesa3d
Environments:
gnu (native)
gnuabi64
gnueabi
gnueabihf
gnux32
code16
eabi
eabihf
android
musl
musleabi
musleabihf
msvc
itanium
cygnus
amdopencl
coreclr
The Zig Standard Library (@import("std")
) has architecture, environment, and operating sytsem
abstractions, and thus takes additional work to support more platforms. It currently supports
Linux x86_64. Not all standard library code requires operating system abstractions, however,
so things such as generic data structures work an all above platforms.
These coding conventions are not enforced by the compiler, but they are shipped in this documentation along with the compiler in order to provide a point of reference, should anyone wish to point to an authority on agreed upon Zig coding style.
Roughly speaking: camelCaseFunctionName
, TitleCaseTypeName
,
snake_case_variable_name
. More precisely:
x
is a struct
(or an alias of a struct
),
then x
should be TitleCase
.
x
otherwise identifies a type, x
should have snake_case
.
x
is callable, and x
's return type is type
, then x
should be TitleCase
.
x
is otherwise callable, then x
should be camelCase
.
x
should be snake_case
.
Acronyms, initialisms, proper nouns, or any other word that has capitalization rules in written English are subject to naming conventions just like any other word. Even acronyms that are only 2 letters long are subject to these conventions.
These are general rules of thumb; if it makes sense to do something different,
do what makes sense. For example, if there is an established convention such as
ENOENT
, follow the established convention.
const namespace_name = @import("dir_name/file_name.zig");
var global_var: i32 = undefined;
const const_name = 42;
const primitive_type_alias = f32;
const string_alias = []u8;
const StructName = struct {};
const StructAlias = StructName;
fn functionName(param_name: TypeName) {
var functionPointer = functionName;
functionPointer();
functionPointer = otherFunction;
functionPointer();
}
const functionAlias = functionName;
fn ListTemplateFunction(comptime ChildType: type, comptime fixed_size: usize) -> type {
return List(ChildType, fixed_size);
}
fn ShortList(comptime T: type, comptime n: usize) -> type {
struct {
field_name: [n]T,
fn methodName() {}
}
}
// The word XML loses its casing when used in Zig identifiers.
const xml_document =
\\<?xml version="1.0" encoding="UTF-8"?>
\\<document>
\\</document>
;
const XmlParser = struct {};
// The initials BE (Big Endian) are just another word in Zig identifier names.
fn readU32Be() -> u32 {}
See the Zig Standard Library for more examples.
Root = many(TopLevelItem) EOF
TopLevelItem = ErrorValueDecl | CompTimeExpression(Block) | TopLevelDecl | TestDecl
TestDecl = "test" String Block
TopLevelDecl = option(VisibleMod) (FnDef | ExternDecl | GlobalVarDecl | UseDecl)
ErrorValueDecl = "error" Symbol ";"
GlobalVarDecl = VariableDeclaration ";"
VariableDeclaration = option("comptime") ("var" | "const") Symbol option(":" TypeExpr) option("align" "(" Expression ")") "=" Expression
ContainerMember = (ContainerField | FnDef | GlobalVarDecl)
ContainerField = Symbol option(":" Expression) ","
UseDecl = "use" Expression ";"
ExternDecl = "extern" option(String) (FnProto | VariableDeclaration) ";"
FnProto = option("coldcc" | "nakedcc" | "stdcallcc") "fn" option(Symbol) ParamDeclList option("align" "(" Expression ")") option("->" TypeExpr)
VisibleMod = "pub" | "export"
FnDef = option("inline" | "extern") FnProto Block
ParamDeclList = "(" list(ParamDecl, ",") ")"
ParamDecl = option("noalias" | "comptime") option(Symbol ":") (TypeExpr | "...")
Block = "{" many(Statement) option(Expression) "}"
Statement = Label | VariableDeclaration ";" | Defer(Block) | Defer(Expression) ";" | BlockExpression(Block) | Expression ";" | ";"
Label = Symbol ":"
TypeExpr = PrefixOpExpression | "var"
BlockOrExpression = Block | Expression
Expression = ReturnExpression | BreakExpression | AssignmentExpression
AsmExpression = "asm" option("volatile") "(" String option(AsmOutput) ")"
AsmOutput = ":" list(AsmOutputItem, ",") option(AsmInput)
AsmInput = ":" list(AsmInputItem, ",") option(AsmClobbers)
AsmOutputItem = "[" Symbol "]" String "(" (Symbol | "->" TypeExpr) ")"
AsmInputItem = "[" Symbol "]" String "(" Expression ")"
AsmClobbers= ":" list(String, ",")
UnwrapExpression = BoolOrExpression (UnwrapNullable | UnwrapError) | BoolOrExpression
UnwrapNullable = "??" Expression
UnwrapError = "%%" option("|" Symbol "|") Expression
AssignmentExpression = UnwrapExpression AssignmentOperator UnwrapExpression | UnwrapExpression
AssignmentOperator = "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" | "^=" | "|=" | "*%=" | "+%=" | "-%="
BlockExpression(body) = Block | IfExpression(body) | TryExpression(body) | TestExpression(body) | WhileExpression(body) | ForExpression(body) | SwitchExpression | CompTimeExpression(body)
CompTimeExpression(body) = "comptime" body
SwitchExpression = "switch" "(" Expression ")" "{" many(SwitchProng) "}"
SwitchProng = (list(SwitchItem, ",") | "else") "=>" option("|" option("*") Symbol "|") Expression ","
SwitchItem = Expression | (Expression "..." Expression)
ForExpression(body) = option("inline") "for" "(" Expression ")" option("|" option("*") Symbol option("," Symbol) "|") body option("else" BlockExpression(body))
BoolOrExpression = BoolAndExpression "or" BoolOrExpression | BoolAndExpression
ReturnExpression = option("%") "return" option(Expression)
BreakExpression = "break" option(Expression)
Defer(body) = option("%") "defer" body
IfExpression(body) = "if" "(" Expression ")" body option("else" BlockExpression(body))
TryExpression(body) = "if" "(" Expression ")" option("|" option("*") Symbol "|") body "else" "|" Symbol "|" BlockExpression(body)
TestExpression(body) = "if" "(" Expression ")" option("|" option("*") Symbol "|") body option("else" BlockExpression(body))
WhileExpression(body) = option("inline") "while" "(" Expression ")" option("|" option("*") Symbol "|") option(":" "(" Expression ")") body option("else" option("|" Symbol "|") BlockExpression(body))
BoolAndExpression = ComparisonExpression "and" BoolAndExpression | ComparisonExpression
ComparisonExpression = BinaryOrExpression ComparisonOperator BinaryOrExpression | BinaryOrExpression
ComparisonOperator = "==" | "!=" | "<" | ">" | "<=" | ">="
BinaryOrExpression = BinaryXorExpression "|" BinaryOrExpression | BinaryXorExpression
BinaryXorExpression = BinaryAndExpression "^" BinaryXorExpression | BinaryAndExpression
BinaryAndExpression = BitShiftExpression "&" BinaryAndExpression | BitShiftExpression
BitShiftExpression = AdditionExpression BitShiftOperator BitShiftExpression | AdditionExpression
BitShiftOperator = "<<" | ">>" | "<<"
AdditionExpression = MultiplyExpression AdditionOperator AdditionExpression | MultiplyExpression
AdditionOperator = "+" | "-" | "++" | "+%" | "-%"
MultiplyExpression = CurlySuffixExpression MultiplyOperator MultiplyExpression | CurlySuffixExpression
CurlySuffixExpression = TypeExpr option(ContainerInitExpression)
MultiplyOperator = "*" | "/" | "%" | "**" | "*%"
PrefixOpExpression = PrefixOp PrefixOpExpression | SuffixOpExpression
SuffixOpExpression = PrimaryExpression option(FnCallExpression | ArrayAccessExpression | FieldAccessExpression | SliceExpression)
FieldAccessExpression = "." Symbol
FnCallExpression = "(" list(Expression, ",") ")"
ArrayAccessExpression = "[" Expression "]"
SliceExpression = "[" Expression ".." option(Expression) "]"
ContainerInitExpression = "{" ContainerInitBody "}"
ContainerInitBody = list(StructLiteralField, ",") | list(Expression, ",")
StructLiteralField = "." Symbol "=" Expression
PrefixOp = "!" | "-" | "~" | "*" | ("&" option("align" "(" Expression option(":" Integer ":" Integer) ")" ) option("const") option("volatile")) | "?" | "%" | "%%" | "??" | "-%"
PrimaryExpression = Integer | Float | String | CharLiteral | KeywordLiteral | GroupedExpression | GotoExpression | BlockExpression(BlockOrExpression) | Symbol | ("@" Symbol FnCallExpression) | ArrayType | (option("extern") FnProto) | AsmExpression | ("error" "." Symbol) | ContainerDecl
ArrayType : "[" option(Expression) "]" option("align" "(" Expression option(":" Integer ":" Integer) ")")) option("const") option("volatile") TypeExpr
GotoExpression = "goto" Symbol
GroupedExpression = "(" Expression ")"
KeywordLiteral = "true" | "false" | "null" | "continue" | "undefined" | "error" | "this" | "unreachable"
ContainerDecl = option("extern" | "packed") ("struct" | "enum" | "union") "{" many(ContainerMember) "}"